High Precision Gear Reducers RV-N-series, Überblick




background image

TM

High Reliability  High Rigidity

R V   N   S E R I E S

High Precision Gear Reducers

High Prec

ision

Gear Reduc

ers

R

V N SERIES

● Nabtesco, VIGODRIVE, VIGOGREASE, RV are registered trademarks or trademarks of Nabtesco Corporation.
● Specifications are subject to change without notice.
● The PDF data of this catalog can be downloaded from the following website.
http://precision.nabtesco.com/
If any addition or modification is made to the published information, the PDF data may be updated before the printed catalog.
Due to this, please note that some contents of the PDF data may be changed or revised from those in this catalog.
● Unauthorized reprinting, reproduction, copying, or translation of this catalog in whole or in part is strictly prohibited.

CAT.140829L

Rev. 008

Europe and Africa

North and South America

China

Asia and others

Nabtesco Precision Europe GmbH

Tiefenbroicher Weg 15, 40472 Düesseldorf, Germany
TEL: +49-211-173790  FAX: +49-211-364677
E-MAIL: info@nabtesco.de   www.nabtesco.de

Nabtesco Motion Control Inc. in U.S.A (North America & South America)

23976 Freeway Park Drive, Farmington Hills, MI 48335, USA
TEL: +1-248-553-3020  FAX: +1-248-553-3070
E-MAIL: engineer@nabtescomotioncontrol.com   www.nabtescomotioncontrol.com

Shanghai Nabtesco Motion-equipment Co., Ltd.

Room 1706, Hong Jia Tower, No. 388 Fu Shan Road, Pudong New Area, Shanghai 200122, China
TEL: +86-21-3363-2200  FAX: +86-21-3363-2655
E-MAIL: info@nabtesco-motion.cn   www.nabtesco-motion.cn

Nabtesco Corporation

Osaka Sales Office

21st Fl, Dojima Avanza, 1-6-20 Dojima, Kita-ku, Osaka 530-0003, Japan
TEL: +81-6-6341-7180  FAX: +81-6-6341-7182

Tsu Plant (Engineering Department)

594 Ichimachida, Katada-cho, Tsu, Mie 514-8533, Japan
TEL: +81-59-237-4600  FAX: +81-59-237-4610
E-MAIL: P_Information@nabtesco.com   www.nabtesco.com

background image

Doors

Nabtesco technology

opens and closes

automatic doors in

buildings and platform

doors at train stations.

Robots

Precision reduction

gears precisely move

and stop industrial

robots.

Contributing to society with our
‘Moving it. Stopping it.’ technologies

Nabtesco technologies

are at work in many

areas of our

daily lives.

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

technologies

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

supporting

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

society

Nabtesco's

technologies

supporting

society

Nabtesco manufactures products which are used in everyday life. Our

high-accuracy components are essential for moving objects; they may

be rarely visible, but are the foundation of everyday objects that you see

moving and wonder how. Nabtesco’s technologies are found throughout

objects that move and stop people’s lives.

Construction

machinery

Running motors and

control valves start

and stop hydraulic

excavators.

Bullet trains

Brakes and doors

ensure safety and

comfort for the

world-famous

Shinkansen bullet trains.

Airplanes

The flight control

systems are crucial

for the flight safety of

aircraft.

Tankers

The engine remote

control systems for

vessels move and

stop large vessels.

Wind turbines

The drive units for wind

turbine generators

control the orientation of

the wind turbine and the

angle of the blades.

1. In the case where Nabtesco confirms that a defect of the Product was caused due to Nabtesco’s design or

manufacture within the Warranty Period of the Product, Nabtesco shall repair or replace such defective

Product at its cost.  The Warranty Period shall be from the delivery of the Product by Nabtesco or its distribu-

tor to you (“Customer”) until the end of one (1) year thereafter, or the end of two thousand (2,000) hours

running of the Product installed into Customer’s equipment, whichever comes earlier.

2. Unless otherwise expressly agreed between the parties in writing, the warranty obligations for the Product

shall be limited to the repair or replacement set forth herein.  OTHER THAN AS PROVIDED HEREIN,

THERE ARE NO WARRATIES ON THE PRODUCT, EXPRESS OR IMPLIED, INCLUDING WITHOUT

LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE.

3. The warranty obligation under the Section 1 above shall not apply if:

a) the defect was caused due to the use of the Product deviated from the Specifications or the working

conditions provided by Nabtesco;

b) the defect was caused due to exposure to foreign substances or contamination (dirt, sand etc.)
c) lubricant or spare part other than the ones recommended by Nabtesco was used in the Product;
d) the Product was used in an unusual environment (such as high temperature, high humidity, a lot of dust,

corrosive/volatile/inflammable gas,  pressurized/depressurized air, under water/liquid or others except for

those expressly stated in the Specifications);

e) the Product was disassembled, re-assembled, repaired or modified by anyone other than Nabtesco;
f ) the defect was caused due to the equipment into which the Product was installed;
g) the defect was caused due to an accident such as fire, earthquake, lightning, flood or others; or
h) the defect was due to any cause other than the design or manufacturing of the Product.

4. The warranty period for the repaired/replaced Product/part under the Section 1 above shall be the rest of the

initial Warranty Period of the defective Product subjected to such repair/replace.

Warranty

background image

1

C O N T E N T S

The key words for Nabtesco are
‘motion control’. We use our strengths
in the fi elds of component and systems
technologies to develop highly creative
products. Through the Nabtesco Group
as a whole, we can also utilize our
advantage of expertise to maximum
effect in order to further enhance these
strengths.
In the air, on land and at sea, we have
a leading share in various fi elds of both
international and domestic markets.
Nabtesco will continue to evolve by
utilizing its strengths in many fi elds and
by exploring the possibilities of the future.

Who  is  Nabtesco?

April 2002        Initiation of hydraulic equipment business alliance
October 2003  Business merger

NABCO Ltd.

Established 1925

Teijin Seiki

Co., Ltd.

Established 1944

Business Merger

in 2003

Motion control

The  business  alliance  between Teijin  Seiki  and
NABCO on hydraulic equipment projects was the
beginning of  a mutual confi rmation by the companies
of the other’s product confi guration, core technologies,
corporate strategies and corporate culture. This led
to a common recognition that a business merger
would be an extremely effective means of increasing
corporate value and achieving long-term development.
Based on this mutual judgment, in 2003 an equity
transfer was conducted to establish Nabtesco as
a pure holding company, with both firms as wholly
owned subsidiaries. After a year of preparation, both
companies  were  absorbed  and  amalgamated  by
means of a short form merger, and Nabtesco was
transitioned to an operating holding company.

02 - 03

04 - 05

06

07

08 - 09

10 - 19

22

23

24

25 - 32

33

34

35

36 - 37

38

39 - 41

42 - 49

50 - 51

52

53

54

55

B

ack inside

cover

What is the RV N

SERIES

?

Examples of uses for the RV N

SERIES

Principle of speed reduction

RV N

SERIES

model code

Rating table

External dimensions

Technical Information

Considering the use of the RV N

SERIES

Glossary

Product Selection

Product selection fl owchart

Model code selection examples

Allowable moment diagram

Technical Data

No-load running torque

Low temperature characteristic

Effi ciency table

Calculation of tilt angle and torsion angle

Design Points

Reduction gear installation components

Input gears

Lubricant VIGOGREASE

®

Appendix

Inertia moment calculation formula

Troubleshooting checksheet

APPLICATION WORKSHEET

VIGOGREASE

®

Ordering Information

Warranty

background image

2

Based  on  our  RV  precision  reduction
gears which achieve 5 million units already
shipped,  the  new  RV  N

SERIES

models

have been made even more compact and
lightweight.

What is the RV

TM

N

SERIES

?

RV

TM

precision reduction gears, already

top sellers in the robotics industry, now
evolved even further!!
Compact N Series gears
deliver great potential!!

60%

share of

the global market for

industrial (vertical-

articulated) robot joints

* Based on Nabtesco studies

background image

3

Space-saving design for a wide range of uses

Model size comparison

Model

Rated Torque (Nm)

Allowable moment (Nm)

Allowable thrust (N)

Weight (kg)

Outside diameter (mm)

RV-42N
412
1,660
5,220
6.3
Ø159

Compact and Lightweight

The same basic performance

The same basic performance

Compact and Lightweight

Smaller

Lighter

(Compared with our existing products)

(Compared with our existing products)

External dimensions

8 to 20% smaller

Weight

16 to 36% lighter

(Compared with our existing products)

(Compared with our existing products)

Inspection /

measurement

Robotics

Machine tools Food industry

Energy

Wood

processing

Semiconductors Medical care Transportation

RV-40E
412
1,666
5,194
9.3
Ø190

RV N

SERIES features

background image

4

Examples of uses for the RV

TM

N

SERIES

Vertical-articulated robot (joint shaft)

Machine tool ATC magazine

SCARA robot

Machine tool (turret of lathe)

background image

5

Positioning turntable

Cover open/close and reverser

Medical device

Glass substrate/wafer rotation and positioning

AGV drive

background image

6

The RV is a 2-stage precision reduction gear.

1st stage

Spur gear reduction

•  An  input  gear  engages  with  and  rotates  spur  gears  that  are  coupled  to  crankshafts.  Several  overall  gear  ratios  can  be  provided  by

selecting various first stage ratios.

2nd stage

Epicyclic gear reduction

Crankshafts driven by the spur gears cause an eccentric motion of two epicyclic gears called RV gears that are offset 180 degrees

from one another to provide a balanced load.

The eccentric motion of the RV gears causes engagement of the cycloidal shaped gear teeth with cylindrically shaped pins located

around the inside edge of the case.

In the course of one revolution of the crankshafts the teeth of the RV gear move the distance of one pin in the opposite direction of

the rotating cranks.  The motion of the RV gear is such that the teeth remain in close contact with the pins and multiple teeth
share the load simultaneously.

The output can be either the shaft or the case.  If the case is fixed, the shaft is the output.  If the shaft is fixed, the case is the
output.

Rotating angle: 180 degrees

Rotating angle: 360 degrees

Crankshaft rotating angle: 0 degree

Case

Crankshaft

(Connected to spur gear)

Shaft

RV gear

Pin

The  speed  ratio  is  calculated  using
the formula to the right.

Speed Ratio

Mechanism block diagram

Case

Shaft

Crankshaft

RV gear

Pin

Output

Spur gear

Input gear

2nd reduction

1st reduction

R =1+

Z4

Z2
Z1

R  : Speed ratio
Z1 : Number of teeth on input gear
Z2 : Number of teeth on spur gear
Z3 : Number of teeth on RV gear
Z4 : Number of pins
i

i

: Reduction ratio

=

1

R

Principle of speed reduction

background image

7

RV

TM

N

SERIES

model code

Shaft rotation

Case rotation

Model

code

Frame

number

Series

code

Ratio code

Input gear code

Drawing

25

41, 81, 107.66, 126, 137, 164.07

P.10

42

41, 81, 105, 126, 141, 164.07

P.11

60

41, 81, 102.17, 121, 145.61, 161

P.12

80

41, 81, 101, 129, 141, 171

A: Standard gear A
B: Standard gear B

Z

: No gear

P.13

RV

100

N

41, 81, 102.17, 121, 141, 161

P.14

125

41, 81, 102.17, 121, 145.61, 161

P.15

160

41, 81, 102.81, 125.21, 156, 201

P.16

380

75, 93, 117, 139, 162, 185

P.17

500

81, 105, 123, 144, 159, 192.75

P.18

700

105, 118, 142.44, 159, 183, 203.52

Refer to page 42.

P.19

.

RV - 100 N - 102.17 - A

Direction of rotation and gear ratio

Input

Output

Output

Input

The sign “i” in the above equations signifies the speed reduction ratio of the output shaft rotation to the
input shaft rotation. “+” signifies the output shaft rotation in the same direction as the input shaft.
“-” signifies the same in the reverse direction.

Product code

The overall speed ratio i (of the First and Second reduction stages) will differ between shaft rotation and case
rotation, and can be calculated from the speed ratio.

background image

8

Rating table

Output speed (rpm)

5

10

15

20

25

30

40

50

60

Model

Ratio code

R

Speed ratio

Output torque (Nm)

/

input capacity (kW)

Shaft rotation Case rotation

RV-25N

41

41

40

341

/

0.25

277

/

0.41

245

/

0.55

255

/

0.67

210

/

0.79

199

/

0.89

183

/

1.09

171

/

1.28

162

/

1.45

81

81

80

107.66

323/3

320/3

126

126

125

137

137

136

164.07

2133/13

2120/13

RV-42N

41

41

40

573

/

0.43

465

/

0.70

412

/

0.92

378

/

1.13

353

/

1.32

335

/

1.50

307

/

1.84

287

/

2.15

272

/

2.44

81

81

80

105

105

104

126

126

125

141

141

140

164.07

2133/13

2120/13

RV-60N

41

41

40

834

/

0.62

678

/

1.01

600

/

1.35

550

/

1.65

515

/

1.93

487

/

2.19

447

/

2.68

418

/

3.13

396

/

3.55

81

81

80

102.17

1737/17

1720/17

121

121

120

145.61

1893/13

1880/13

161

161

160

RV-80N

41

41

40

1,090

/

0.82

885

/

1.32

784

/

1.76

719

/

2.15

673

/

2.52

637

/

2.86

584

/

3.50

546

/

4.09

517

/

4.64

81

81

80

101

101

100

129

129

128

141

141

140

171

171

170

RV-100N

41

41

40

1,390

/

1.04

1,129

/

1.69

1,000

/

2.24

917

/

2.74

858

/

3.21

812

/

3.65

745

/

4.46

697

/

5.21

660

/

5.92

81

81

80

102.17

1737/17

1720/17

121

121

120

141

141

140

161

161

160

RV-125N

41

41

40

1,703

/

1.27

1,383

/

2.07

1,225

/

2.75

1,124

/

3.36

1,051

/

3.93

995

/

4.47

913

/

5.46

854

/

6.39

808

/

7.25

81

81

80

102.17

1737/17

1720/17

121

121

120

145.61

1893/13

1880/13

161

161

160

RV-160N

41

41

40

2,225

/

1.66

1,807

/

2.70

1,600

/

3.59

1,468

/

4.39

1,373

/

5.13

1,300

/

5.83

1,192

/

7.13

81

81

80

102.81

1131/11

1120/11

125.21

2379/19

2360/19

156

156

155

201

201

200

RV-380N

75

75

74

5,178

/

3.87

4,206

/

6.29

3,724

/

8.36

3,416

/

10.22

3,195

/

11.95

93

93

92

117

117

116

139

139

138

162

162

161

185

185

184

RV-500N

81

81

80

6,813

/

5.10

5,534

/

8.28

4,900

/

11.00

4,495

/

13.45

4,204

/

15.72

105

105

104

123

123

122

144

144

143

159

159

158

192.75

192.75

191.75

RV-700N

105

105

104

9,733

/

7.28

7,905

/

11.83

7,000

/

15.71

118

118

117

142.44

142.44

141.44

159

159

158

183

183

182

203.52

3867/19

3848/19

Note:  1. The allowable output speed will differ depending upon the duty ratio, load, and ambient temperature. Contact us regarding use above the allowable output speed Ns1

with a 40% duty ratio.

2. The input capacity (kW) is calculated according to the following calculation formula:

3. When the reduction gear is used at low temperatures, there will be a larger no-load running torque. Note this characteristic when selecting a motor.

(Refer to “Low temperature characteristic” on page 35

N: Output speed (rpm)
T : Output torque (Nm)

η

=70: Reduction gear effi ciency (%)

Input capacity (kW) =

2π∙N∙T

60 ∙

∙10

3

100

η

Note:  Input capacity is just a reference based on the above calculation.

background image

9

T

0

Rated torque

(Note 7)

N

0

Rated output

Speed

K

Rated service

life

T

S1

Allowable

acceleration/

deceleration

torque

T

S2

Momentary

maximum

allowable

torque

N

S0

Allowable Output

Speed (Note 1)

Duty ratio: 100%

N

S1

Allowable Output

Speed (Note 1)

Duty ratio: 40%

Backlash

Lost

motion

Angular

transmission

error (Max.)

Startup

effi ciency

(Typical

value)

M

O1

Allowable

moment

(Note 4)

M

O2

Momentary

allowable

moment (Max.)

I

Reduced value of the

inertia moment for the

input shaft  (Note 5)

Weight

(Nm)

(rpm)

(h)

(Nm)

(Nm)

(rpm)

(rpm)

(arc.min.) (arc.min.) (arc.sec.)

(%)

(Nm)

(Nm)

(kgm

2

)

(kg)

245

15

6,000

612

1,225

57

110

1.0

1.0

70

80

784

1,568

1.71×10

-5

3.8

6.79×10

-6

4.91×10

-6

4.03×10

-6

3.62×10

-6

3.26×10

-6

412

15

6,000

1,029

2,058

52

100

1.0

1.0

60

80

1,660

3,320

4.43×10

-5

6.3

1.87×10

-5

1.42×10

-5

1.07×10

-5

1.01×10

-5

7.66×10

-6

600

15

6,000

1,500

3,000

44

94

1.0

1.0

50

80

2,000

4,000

8.51×10

-5

8.9

3.93×10

-5

2.86×10

-5

2.33×10

-5

1.84×10

-5

1.61×10

-5

784

15

6,000

1,960

3,920

40

88

1.0

1.0

50

80

2,150

4,300

1.16×10

-4

9.3

5.17×10

-5

3.57×10

-5

2.68×10

-5

2.40×10

-5

1.86×10

-5

1,000

15

6,000

2,500

5,000

35

83

1.0

1.0

50

80

2,700

5,400

1.58×10

-4

13.0

7.30×10

-5

5.82×10

-5

4.85×10

-5

4.05×10

-5

3.43×10

-5

1,225

15

6,000

3,062

6,125

35

79

1.0

1.0

50

80

3,430

6,860

2.59×10

-4

13.9

9.61×10

-5

7.27×10

-5

5.88×10

-5

4.60×10

-5

4.01×10

-5

1,600

15

6,000

4,000

8,000

19

48

1.0

1.0

50

80

4,000

8,000

3.32×10

-4

22.1

1.54×10

-4

1.13×10

-4

8.95×10

-5

6.75×10

-5

4.75×10

-5

3,724

15

6,000

9,310

18,620

11.5

27

1.0

1.0

50

80

7,050

14,100

7.30×10

-4

44

5.61×10

-4

4.93×10

-4

3.84×10

-4

3.28×10

-4

2.64×10

-4

4,900

15

6,000

12,250

24,500

11

25

1.0

1.0

50

80

11,000

22,000

1.35×10

-3

57.2

9.50×10

-4

7.44×10

-4

6.16×10

-4

5.62×10

-4

4.16×10

-4

7,000

15

6,000

17,500

35,000

7.5

19

1.0

1.0

50

80

15,000

30,000

1.61×10

-3

102.0

1.28×10

-3

1.18×10

-3

9.11×10

-4

8.42×10

-4

7.46×10

-4

Note:  4. The allowable moment will differ depending on the thrust load. Check the allowable moment diagram (p. 33).
5. The inertia moment value is for the reduction gear. It does not include the inertia moment for the input gear.
6. For the moment rigidity and torsional rigidity, refer to the calculation of tilt angle and the torsion angle (p. 38).
7. The rated torque is the value that produces the rated service life based on operation at the rated output speed; it does not indicate the maximum load. Refer to the

“Glossary” (p.23) and the “Product selection fl owchart” (p.24).

8. Contact us regarding speed ratios other than those listed above.
9. The specifi cations above are based on Nabtesco evaluation methods; this product should only be used after confi rming that it is appropriate for the operating

conditions of your system.

background image

10

External dimensions

Model : R

V-25N

Specifi

cations and dimensions are subject to change without notice.

background image

11

Model : R

V-42N

Specifi

cations and dimensions are subject to change without notice.

background image

12

Model :

R

V-60N

Specifi

cations and dimensions are subject to change without notice.

background image

13

Model :

R

V-80N

Specifi

cations and dimensions are subject to change without notice.

background image

14

Model :

R

V-100N

Specifi

cations and dimensions are subject to change without notice.

background image

15

Model :

R

V-125N

Specifi

cations and dimensions are subject to change without notice.

background image

16

Model :

R

V-160N

Specifi

cations and dimensions are subject to change without notice.

background image

17

*Contact us for more information on this model.

Model :

R

V-380N

Specifi

cations and dimensions are subject to change without notice.

background image

18

Model :

R

V-500N

Specifi

cations and dimensions are subject to change without notice.

background image

19

Model :

R

V-700N

Specifi

cations and dimensions are subject to change without notice.

background image

20

background image

21

Technical Information

background image

22

•  The standard replacement time for Iubricant is 20,000 hours. However, when operation involves a reduction gear

surface temperature above 40°C, the state of degradation of the lubricant should be checked in advance of that
and the grease replaced earlier as necessary.

•  When the reduction gear is used under high load and at a high duty ratio, it may overheat and the surface

temperature may exceed the allowable temperature. Be aware of conditions so that the surface temperature of the
reduction gear does not exceed 60°C while it is in operation. There is a possibility of damage (to the product) if the
surface temperature exceeds 60°C.

•  The specifi cations indicated in this catalog are based on Nabtesco evaluation methods. This product should only

be used after confi rming that it is appropriate for the operating conditions of your system.

•  When the range of the rotation angle is small (10 degrees or less), the service life of the reduction gear may be

reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Note: Contact us in case the rotation angle is 10 degrees or less.

•  Safety information and detail product instructions are indicated in the operation manual.
The operation manual can be downloaded from the following website.

http://precision.nabtesco.com/

Considering the use of the RV

TM

N

SERIES

Operating environment

Product specifi cations indicated in this catalog

Export

Application

Safety measures

Reduction gear output rotation angle

•  When this product is exported from Japan, it may be subject to the export regulations provided in the “Foreign

Exchange Order and Export Trade Control Order”. Be sure to take suffi cient precautions and perform the required
export procedures in advance if the fi nal operating party is related to the military or the product is to be used in the
manufacture of weapons, etc.

This product features high precision and high rigidity, however, it is necessary to strictly comply with various restrictions
and make appropriate to maximize the product’s features. Please read this technical document thoroughly and select
and adopt an appropriate model based on the actual operating environment, method, and conditions at your facility.

•  If failure or malfunction of the product may directly endanger human life or if it is used in units which may injure the

human body (atomic facilities, space equipment, medical equipment, safety units, etc.), examination of individual
situations is required. Contact our agent or nearest business offi ce in such a case.

•  Although this product has been manufactured under strict quality control, a mistake in operation or misuse can

result in breakdown or damage, or an accident resulting in injury or death. Be sure to take all appropriate safety
measures, such as the installation of independent safeguards.

Note 1:

2:

Use the reduction gear under the following environment:

·  Location where the ambient temperature is between -10°C

to 40°C.

·  Location where the humidity is less than 85% and no

condensation occurs.

·  Location where the altitude is less than 1000 m.
·  Well-ventilated location

Do not install the reduction gear at the following locations.

· Location where a lot of dust is collected.
· Outdoors that can be directly affected by wind and rain
· Location near the environment that contains combustible, explosive,

or corrosive gases and flammable materials.

· Location that is heated due to heat transfer and radiation from

peripherals and direct sun.

· Location where the performance of the motor can be affected by

magnetic fields or vibration.

If the required operating environment cannot be established/met, contact us in advance.
When using the reduction gear under special conditions (clean room, equipment for food, concentrated alkali,
high-pressure steam, etc.), contact our agent or nearest business office in advance.

Maintenance

Reduction gear temperature

Manuals

background image

23

Glossary

Rating service life

The lifetime resulting from the operation with the rated torque and
the rated output speed is referred to as the “rated service life”.

Allowable acceleration/deceleration torque

When the machine starts or stops, the load torque to be applied
to the reduction gear is larger than the constant-speed load torque
due to the effect of the inertia torque of the rotating part.
In such a situation, the allowable torque during
acceleration/deceleration is referred to as “allowable
acceleration/deceleration torque”.
Note: Be careful that the load torque, which is applied at startup

and stop, does not exceed the allowable
acceleration/deceleration torque.

Momentary maximum allowable torque

A large torque may be applied to the reduction gear due to
execution of emergency stop or by an external shock. In such a
situation, the allowable value of the momentary applied torque is
referred to as “momentary maximum allowable torque”.
Note: Be careful that the momentary excessive torque does not

exceed the momentary maximum allowable torque.

Allowable output speed

The allowable value for the reduction gear’s output speed during
operation without a load is referred to as the “allowable output
speed”.

Notes: Depending on the conditions of use (duty ratio, load,

ambient temperature), the reduction gear temperature
may exceed 60°C even when the speed is under the
allowable output speed. In such a case, either take
cooling measures or use the reduction gear at a speed
that keeps the surface temperature at 60°C or lower.

Duty ratio

The duty ratio is defined as the ratio of the sum total time of
acceleration, constant, and deceleration to the cycle time of the
reduction gear.

Torsional rigidity, lost motion, backlash

When a torque is applied to the output shaft while the input shaft
is fixed, torsion is generated according to the torque value. The
torsion can be shown in the hysteresis curves.
The value of b/a is referred to as “torsional rigidity”.
The torsion angle at the mid point of the hysteresis curve width
within ±3% of the rated torque is referred to as “lost motion”.
The torsion angle when the torque indicated by the hysteresis
curve is equal to zero is referred to as “backlash”.

Startup Efficiency

The efficiency of the moment when the reduction gear starts up is
referred to as “startup efficiency”.

No-load running torque (input shaft)

The torque for the input shaft that is required to run the reduction
gear without load is referred to as “no-load running torque”.

Allowable Moment and Maximum Thrust Load

The external load moment may be applied to the reduction gear
during normal operation. The allowable values of the external
moment and the external axial load at this time are each referred
to as “allowable moment” and “maximum thrust load”.

Angular transmission error

The angular transmission error is defined as the difference
between the theoretical output angle of rotation (when there are
input instructions for an arbitrary rotation angle) and the actual
output angle of rotation.

<Hysteresis curve>

Backlash

Lost motion

a

b

±100% Rated Torque

±3% Rated Torque

Torsion angle

Load tor

que

Max torque
for stop

Max torque for startup

External shock torque

Constant torque

Shock torque at
emergency stop

Time

One revolution of the output shaft (°)

23 sec

Angular transmission error (arc.sec.)

background image

24

A limitation is imposed on the motor torque value according to the momentary maximum
allowable torque of the selected reduction gear. (Refer to page 32)

Product selection fl owchart

Product selection

YES

NO

NO

YES

YES

Checking of operating environment

YES

NO

NO

YES

YES

Reconsider the

appropriate model.

Reconsider the

appropriate model.

YES

NO

Compatible

Step 1.

Set items required for selection.
(P.25, 26)

Step 2.

Verify the operating environment.
(P.25, 26)

Step 4.

Select a reduction gear.

(P.28 to 31)

Setting of operation conditions

Weight of the equipment to be verified
Configuration of the equipment to be verified
Rotation angle
Rotation time

Cycle time
Operating hours per day
Operating days per year

Ambient temperature
Humidity
Altitude
Ventilation
Reduction gear surface temperature

Locations where the product
cannot be installed
(Refer to page 22.)

Setting of equipment to be verified

Reduction gear mounting direction

Re-evaluate

operation pattern.

Review load conditions.

Step 3.

Verify the reduction gear load.
(P.25 to 27)

1.Calculation of inertia moment

2.Calculation of constant torque

3.Setting of operation pattern

4.Calculation of inertia torque

5.Calculation of load torque

6.Calculation of average speed and average
load torque

Select a reduction gear based on the calculated rated torque.

Calculate the rated torque

that satisfies the required life and select

a reduction gear.

Reduction gear

selection method(1)

Tentatively select a reduction gear model.

Determine the reduction gear model.

Reduction gear

selection method(2)

Verify the maximum torque for startup.

T

1

,T

3

≤ T

S1

NO

Verify the shock torque due to

an emergency stop.

P

em

≤ C

em

YES

YES

YES

YES

Verify the output speed.

N

m0

≤ N

s0

NO

NO

NO

NO

Examine the moment load.

M ≤ M

O1

Verify the thrust load

W

2

Allowable thrust.

NO

NO

NO

NO

NO

Verify the maximum torque for startup.

T

1

,T

3

≤ T

S1

Verify the shock torque due to

an emergency stop.

P

em

≤ C

em

YES

YES

YES

YES

YES

Verify the thrust load

W

2

Allowable thrust.

Verify the output speed.

N

m0

≤ N

s0

Verify the service life.

L

ex

≤ L

Examine the moment load.

M ≤ M

O1

NO

background image

25

Model code selection examples

With horizontal rotational transfer

Step 1. Set the items required for selection.

Setting item

Setting

Reduction gear mounting direction

Vertical shaft installation

D

2

D

1

a

b

Equipment to be

verified: Work

Equipment to be

verified: Disk

Motor flange

Motor

Fixing component

Reduction gear

Equipment weight to be considered

W

A

Disk weight (kg)

180

W

B

Work weight (kg)

20×4 pieces

Equipment confi guration to be considered

D

1

Disk: D dimension (mm)

1,200

a

Work piece: a dimension (mm)

100

b

Work piece: b dimension (mm)

300

D

2

Work piece: P.C.D. (mm)

1,000

Operation conditions

Rotation angle (°)*

1

180

[t

1

+t

2

+t

3

]

Rotation time (s)

2.5

[t

4

]

Cycle time (s)

20

Q

1

Equipment operation hours per day (hours/day)

12

Q

2

Equipment operation days per year (days/year)

365

Step 2. Verify the operating environment.

Checkpoint

Standard value

S

0

Ambient temperature (°C)

-10 to +40

S

1

Reduction gear surface temperature (°C)

60 or less

Note: Refer to “Operating environment” on p. 22 for values other than those listed above.

Step 3-1. Examine the reduction gear load

Setting item

Calculation formula

Selection examples

(1) Calculate the inertia moment based the calculation formula on page 52.

I

R

Load inertia moment
(kgm

2

)

2

1

2

1

2

2

2

2

2

2

1

1

n

1,000

2

1,000

1,000

12

2

1,000

2

R

R

R

R

R

B

B

R

A

R

I

I

I

I

I

D

W

b

a

W

I

D

W

I

+

=

=
=

×

×

×

+

+

=

×

×

=

Work inertia

Disk inertia moment

n =

Number of work pieces

(          )

(            )

2

2

2

2

2

2

2

1

53.1

7

.

20

32.4

7 ( kgm

2

)

.

20

4

1,000

2

1,000

20

1,000

300

1,000

100

12

20

32.4

2

1,000

2

1,200

180

m

kg

I

I

m

kg

I

R

R

R

=

+

=

=

×

×

×

+

+

=

=

×

×

=

(2) Examine the constant torque.

T

R

Constant torque
(Nm)

Maximum pilot diameter: 353 (mm)
(RV-700N)

Note: If the reduction gear model is not determined,
select the following pilot diameter:

(

)

Note:

Friction factor

=

=

×

×

×

×

+

=

D

D

W

W

T

in

in

B

A

R

1,000

2

9.8

Rolling diameter: Use the pilot diameter

which is almost equivalent
to the rolling diameter in
this selection calculation.

Use 0.015 for this example as the load
is applied to the bearing of the RD2
precision reduction gear.

μ

μ

(

)

T

R

=

×

×

×

×

×

+

=

6.7(Nm)

015

.

0

1,000

2

353

9.8

4

20

180

Step 3-2: Proceed to p. 27.

Product selection

*1. When the range of the rotation angle is small (10 degrees or less), the rating life of the reduction gear

may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Load torque (Nm)

Time (s)

Speed (rpm)

S

0

(°C)

-10

-10

40

60

40

S

1

(°C

)

background image

26

With vertical rotational transfer

Step 1. Set the items required for selection.

Setting item

Setting

Reduction gear mounting direction

Horizontal shaft installation

Equipment weight to be considered

W

C

Mounted work weight (kg)

490

Equipment confi guration to be considered

a

a dimension (mm)

500

b

b dimension (mm)

500

R

R dimension (mm)

320

Operation conditions

Rotation angle (°)*

1

90

[t

1

+t

2

+t

3

]

Rotation time (s)

1.5

[t

4

]

Cycle time (s)

20

Q

1

Equipment operation hours per day (hours/day)

24

Q

2

Equipment operation days per year (days/year)

365

Step 2. Verify the operating environment.

Checkpoint

Standard value

S

0

Ambient temperature (°C)

-10 to +40

S

1

Reduction gear surface temperature (°C)

60 or less

Note: Refer to “Operating environment” on p. 22 for values other than those listed above.

Step 3-1. Examine the reduction gear load

Setting item

Calculation formula

Selection examples

(1) Calculate the inertia moment based the calculation formula on page 52.

I

R

Load inertia moment
(kgm

2

)

(2) Examine the constant torque.

T

R

Constant torque
(Nm)

Step 3-2: Proceed to p. 27.
(Refer to “With horizontal rotational transfer” for selection examples.)

Load torque (Nm)

Time (s)

Rotation speed (rpm)

Position of the center of gravity

Rotation center

a

R

b

Load torque (Nm)

Time (s)

Rotation speed (rpm)

Position of the center of gravity

Rotation center

a

R

b

2

1,000

1,000

1,000

12

×

+

+

2

2

×

=

R

W

b

a

W

I

C

C

R

1,000

8

.

9 ×

×

=

R

W

T

C

R

(          )

2

2

2

2

6

.

70

1,000

320

490

1,000

500

1,000

500

12

490

m

kg

I

R

=

×

+

+

×

=

(Nm)

T

R

=

×

×

=

1,537

1,000

320

8

.

9

490

*1. When the range of the rotation angle is small (10 degrees or less), the rating life of the reduction gear

may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

S

0

(°C)

-10

-10

40

60

40

S

1

(°C

)

Equipment to be examined

Fixing component

Motor

Motor flange

Reduction gear

background image

27

Step 3-2. Set items required for selection

Setting item

Calculation formula

Selection examples (With horizontal rotational transfer)

(3) Set the acceleration/deceleration time, constant-speed operation time, and output speed.

t

1

Acceleration time (s)

• The operation pattern does not need to be verifi ed if it is

already set.

• If the operation pattern has not been determined, use the fol-

lowing formula to calculate the reference operation pattern.

Note: 1.  Assume that t

1

and t

3

are the same.

Note: 2.  N

2

= 15 rpm if the reduction gear output speed (N

2

) is

not known.

Note: 3.  If t

1

and t

3

is less than 0, increase the output

speed or extend the rotation time.

Examine the operation pattern using N

2

= 15 rpm as the

reduction gear output speed is unknown.

t

2

Constant-speed  operation
time (s)

t

3

Deceleration time (s)

N

2

Constant speed (rpm)

N

1

Average  speed  for  startup
(rpm)

2

2

1

N

N =

(rpm)

N

5

.

7

2

15

1

=

=

N

3

Average speed for stop (rpm)

2

2

3

N

N =

(rpm)

N

5

.

7

2

15

3

=

=

(4) Calculate the inertia torque for acceleration/deceleration.

T

A

Inertia torque for acceleration
(Nm)

(

)

60

2

0

1

2

×

×

=

t

N

I

T

R

A

π

(

)

T

A

=

×

×

=

166.8 (Nm)

5

.

0

0

15

53.1

60

T

D

Inertia torque for deceleration
(Nm)

(

)

0

3

2

×

×

=

t

N

I

T

R

D

60

(

)

T

D

=

×

×

=

−166.8 (Nm)

60

5

.

0

0 15

53.1

(5) Calculate the load torque for acceleration/deceleration.

T

1

Maximum  torque  for  startup
(Nm)

1

T

T

T

R

A

+

=

T

R

: Constant torque

With horizontal rotational transfer   Refer to page 25
With vertical rotational transfer   Refer to page 26

(Nm)

T

=

+

=

173.5

6.7

8

.

166

1

T

2

Constant maximum torque
(Nm)

R

T

T =

2

(Nm)

T = 6.7

2

T

3

Maximum  torque  for  stop
(Nm)

1

T

T

T

R

A

+

=

T

R

: Constant torque

With horizontal rotational transfer   Refer to page 25
With vertical rotational transfer   Refer to page 26

(Nm)

T

=

+

=

160.1

6.7

8

.

166

3

(6)-1 Calculate the average speed.

N

m

Average speed (rpm)

3

2

1

3

3

2

2

1

1

t

t

t

N

t

N

t

N

t

N

m

+

+

×

+

×

+

×

=

(rpm)

12

5

.

1

5

.

0

5

.

0

5

.

7

5

.

0

15

5

.

1

5

.

7

5

.

0

N

m

=

+

+

×

+

×

+

×

=

(6)-2 Calculate the average load torque.

T

m

Average load torque (Nm)

3

3

2

2

1

1

3

3

3

2

2

2

1

1

1

N

t

N

t

N

t

T

N

t

T

N

t

T

N

t

T

m

×

+

×

+

×

×

×

+

×

×

+

×

×

=

3

10

3

10

3

10

3

10

(Nm)

T

m

=

×

+

×

+

×

×

×

+

×

×

+

×

×

=

3.

110

5.

7

5.

0

15

5.

1

5.

7

5.

0

160.1

5

.7

5.

0

6.7

15

5

.1

5.

173

5

.7

5.

0

3

10

3

10

3

10

3

10

Go to page 28 if the reduction gear model is verifi ed based on the required life.

Go to page 30 if the service life is verifi ed based on the reduction gear model.

[

)

(

360

60

3

1

3

2

1

2

2

3

2

1

3

1

t

t

t

t

t

t

N

t

t

t

t

t

+

+

+

=

×

+

+

=

=

Rotation

Rotation [

]

]

(s)

(rpm)

N

t

t

t

t

t

t

15

5

.

1

5

.

0

5

.

1

)

5

.

0

5

.

0

(

5

.

2

5

(s)

.

0

360

60

15

180

5

.

2

2

2

3

1

2

3

1

=

=

=

=

=

+

=

=

×

=

=

(s)

(s)

background image

28

Step 4. Select a reduction gear
Reduction gear selection method (1) Calculate the required torque based on the load conditions and required life and select a reduction gear.

Setting/verifi cation item

Calculation formula

Selection examples (With horizontal rotational transfer)

(1) Calculate the rated torque for the reduction gear that satisfi es the required life.

L

ex

Required life (year)

Based on the operation conditions

5 years

Q

1cy

Number of cycles per day
(times)

4

1

1

60

60

t

Q

Q

cy

×

×

=

(times)

2,160

20

60

60

12

1

=

×

×

=

cy

Q

Q

3

Operating hours of reduction
gear per day (h)

(

)

60

60

3

2

1

1

3

×

+

+

×

=

t

t

t

Q

Q

cy

(

)

)

(

5

.

1

60

60

5

.

0

5

.

1

5

.

0

2,160

3

h

Q

=

×

+

+

×

=

Q

4

Operating hours of reduction
gear per year (h)

2

3

4

Q

Q

Q

×

=

(   )

h

Q

548

365

5

.

1

4

=

×

=

L

hour

Reduction gear service life (h)

ex

L

Q

L

hour

×

=

4

( )

h

L

hour

2,740

5

548

=

×

=

T

O

'

Reduction gear rated torque
that satisfi es the required life
(Nm)

(  )

:

:

0

3

10

0

N

K

N

N

K

L

hour

T

T

0

'

m

m

×

×

=

Reduction gear rated output speed (rpm)

Reduction gear rated life (h)

(Nm)

T

0

'

=

×

×

=

81.5

15

12

6,000

2,740

3

.

110

3

10

(  )

(2) Tentatively select a reduction gear model based on the calculated rated torque.

Tentative selection of the reduction gear

Select a reduction gear for which the rated torque of the reduction
gear [T

0

]

*1

is equal to or greater than the rated torque of the

reduction gear that satisfi es the required life [T

0

’].

*1 [T

0

]: Refer to the rating table on page 9

RV-25N that meets the following condition is tentatively
selected:
[T

0

] 245 (Nm) ≥ [T

0

’] 81.5 (Nm)

(3) Verify the maximum torque for startup and stop.

Verifi cation of maximum torque for startup
and stop

Check the following conditions:
The allowable acceleration/deceleration torque [T

s1

]

*1

is equal to or

greater than the maximum starting torque [T

1

]

*2

and maximum

stopping torque [T

3

]

*2

If the tentatively selected reduction gear is outside of the
specifi cations, change the reduction gear model.

*1 [T

s1

]: Refer to the rating table on page 9

*2 [T

1

] and [T

3

]: Refer to page 27

[T

s1

] 613 (Nm) ≥ [T

1

] 173.5 (Nm)

[T

3

] 160.1 (Nm)

According to the above conditions, the tentatively selected
model should be no problem.

(4) Verify the output speed.

N

m0

Average speed per cycle (rpm)

Verifi cation of output speed

Check the following condition:
The allowable output speed (100% duty ratio) [N

s0

]

*1

is equal to or

greater than the average speed per cycle [N

m0

]

If the tentatively selected reduction gear is outside of the
specifi cations, change the reduction gear model.
Contact us regarding use of the model at a speed outside the
allowable output speed (40% duty ratio) [N

S1

]

*1

.

Note: The value of [N

S0

] is the speed at which the case temperature

is balanced at 60ºC for 30 minutes.

*1 [N

S0

] and [N

S1

]: Refer to the rating table on page 9

[N

s0

] 57 (rpm) ≥ [N

m0

] 1.5 (rpm)

According to the above condition, the tentatively selected
model should be no problem.

t

4

N

m0

=

t

1

×N

1

+t

2

×N

2

+t

3

×N

3

N

m0

=

=

1.5 (rpm)

20

5

.

7

5

.

0

15

5

.

1

5

.

7

5

.

0

×

+

×

+

×

=

background image

29

Reduction gear selection method (1) Calculate the required torque based on the load conditions and required life and select a reduction gear.

Setting/verifi cation item

Calculation formula

Selection examples (With horizontal rotational transfer)

(5) Verify the shock torque at the time of an emergency stop.

P

em

Expected number of
emergency stop times (times)

Based on the operation conditions.

For example, an emergency stop occurs once a
month.
[P

em

] = 1 x 12 x required life (year) [L

ex

]

= 12 x 5 = 60 (times)

T

em

Shock torque due to an
emergency stop (Nm)

Shock torque due to an emergency stop [T

em

]

Set the operation conditions that meet the following requirement:
Shock torque due to an emergency stop [T

em

] is equal to or less

than the momentary maximum allowable torque [T

s2

]

For example, [T

em

] = 500 (Nm)

N

em

Speed at the time of an
emergency stop (rpm)

For example, [N

em

] = 15 (rpm)

t

em

Deceleration time at the time
of an emergency stop (s)

For example, [t

em

] = 0.05 (s)

Z

4

Number of pins for reduction
gear

Number of pins for RV-25N: 40

C

em

Allowable number of shock
torque application times

Note   [T

s2

]: Momentary maximum allowable torque, refer to the

rating table on page 9

Verifi cation of shock torque due to an
emergency stop

Check the following condition:
The allowable shock torque application count [C

em

] is equal to or

greater than the expected emergency stop count [P

em

]

If the tentatively selected reduction gear is outside of the
specifi cations, change the reduction gear model.

[C

em

] 30,729 ≥ [P

em

] 60

According to the above condition, the tentatively
selected model should be no problem.

(6) Verify the thrust load and moment load.

W

1

R adial load (N)

0 (N)

Distance to the point of radial
load application (mm)

0 (mm)

W

2

Thrust load (N)

In this example,

Note   W

A

, W

B

: Refer to page 25.

2

Distance to the point of thrust
load application (mm)

0 (mm) (As the workpiece center is located on the
rotation axis)

M

Moment load (Nm)

RV-25N As dimension a = 22.1 (mm) and dimension b =
112.4 (mm):

Verify the thrust load and moment load

Check  that  the  thrust  load  and  moment  load  are
within the range in the allowable moment diagram on
page 33.

If the tentatively selected reduction gear is outside of
the specifi cations, change the reduction gear model.

For this example,
Thrust load [W

2

] = 2,548 (N)

Moment load [M] = 0 (N)
As  the  above  values  are  within  the  range  in  the
allowable moment diagram, the tentatively selected
model should be no problem.

Select the reduction gear model that satisfi es all the conditions of the above verifi cation items.
The actual reduction ratio is determined based on the motor speed, input torque, and inertia
moment. Check with the motor manufacturer.

Based on the above verifi cation result, RV-25N is
selected.

Time (s)

t

em

T

em

N

em

Load torque (Nm)

Speed (rpm)

C

em

=

775

3

10

T

em

T

S2

×

t

em

Z

4

60

N

em

×

×

C

em

=

30,729 (times)

=

775

3

10

500

1,225

×

0.05

40

60

15

×

×

Model

Number of pins

(Z

4

)

Model

Number of pins

(Z

4

)

RV-25N

40

RV-125N

40

RV-42N

RV-160N

RV-60N

RV-380N

46

RV-80N

RV-500N

52

RV-100N

RV-700N

(

)

1,000

2

2

1

W

W

b - a

M

×

+

+

×

=

a,b: Refer to the calculation
of the tilt angle on page 38.

W

1

W

2

a

b

2

Output shaft installation surface

(

)

W

9.8

4

20

180

2

W

A

W

B

=

×

×

+

+

=

( )

N

2,548

=

(Nm)

M

=

×

+

+

×

=

0

1,000

0

2,548

)

112.4 -22.1

0

(

0

background image

30

Reduction gear selection method (2): Tentatively select a reduction gear model and evaluate the service life.

Setting/verifi cation item

Calculation formula

Selection examples (With horizontal rotational transfer)

(1) Tentatively select a desired reduction gear model.

Tentative selection of a reduction gear

Tentatively select a desired reduction gear model.

For example, tentatively select RV-25N.

(2) Verify the maximum torque for startup and stop.

Verifi cation of maximum torque for startup
and stop

Check the following conditions:
The allowable acceleration/deceleration torque [T

s1

]

*1

is equal to or

greater than the maximum starting torque [T

1

]

*2

and maximum

stopping torque [T

3

]

*2

If the tentatively selected reduction gear is outside of the
specifi cations, change the reduction gear model.

*1 [T

s1

]: Refer to the rating table on page 9

*2 [T

1

] and [T

3

]: Refer to page 27

[T

s1

] 613 (Nm) ≥ [T

1

] 173.5 (Nm)

[T

3

] 160.1 (Nm)

According to the above conditions, the tentatively selected
model should be no problem.

(3) Verify the output speed.

N

m0

Average speed per cycle (rpm)

Verifi cation of output speed

Check the following condition:
The allowable output speed (100% duty ratio) [N

s0

]

*1

is equal to or

greater than the average speed per cycle [N

m0

]

If the tentatively selected reduction gear is outside of the specifi ca-
tions, change the reduction gear model.
Contact us regarding use of the model at a speed outside the allow-
able output speed (40% duty ratio) [N

S1

]

*1

.

Note: The value of [N

S0

] is the speed at which the case temperature

is balanced at 60ºC for 30 minutes.

*1 [N

S0

] and [N

S1

]: Refer to the rating table on page 9

[N

s0

] 57 (rpm) ≥ [N

m0

] 1.5 (rpm)

According to the above condition, the tentatively selected
model should be no problem.

(4) Verify the shock torque at the time of an emergency stop.

P

em

Expected number of
emergency stop times (times)

Based on the operation conditions.

For example, an emergency stop occurs once a
month.
[P

em

] = 1 x 12 x required life (year) [L

ex

]

= 12 x 5 = 60 (times)

T

em

Shock torque due to an
emergency stop (Nm)

Shock torque due to an emergency stop [T

em

]

Set the operation conditions that meet the following requirement:
Shock torque due to an emergency stop [T

em

] is equal to or less

than the momentary maximum allowable torque [T

s2

]

For example, [T

em

] = 500 (Nm)

N

em

Speed at the time of an
emergency stop (rpm)

For example, [N

em

] = 15 (rpm)

t

em

Deceleration time at the time
of an emergency stop (s)

For example, [t

em

] = 0.05 (s)

Z

4

Number of pins for reduction
gear

Number of pins for RV-25N: 40

C

em

Allowable number of shock
torque application times

Note   [T

s2

]: Momentary maximum allowable torque, refer to the

rating table on page 9

Verifi cation of shock torque due to an
emergency stop

Check the following condition:
The allowable shock torque application count [C

em

] is equal to or

greater than the expected emergency stop count [P

em

]

If the tentatively selected reduction gear is outside of the
specifi cations, change the reduction gear model.

[C

em

] 30,729 ≥ [P

em

] 60

According to the above condition, the tentatively
selected model should be no problem.

t

4

N

m0

=

t

1

×N

1

+t

2

×N

2

+t

3

×N

3

N

m0

=

=

1.5 (rpm)

20

5

.

7

5

.

0

15

5

.

1

5

.

7

5

.

0

×

+

×

+

×

=

Time (s)

t

em

T

em

N

em

Load torque (Nm)

Speed (rpm)

C

em

=

775

3

10

T

em

T

S2

×

t

em

Z

4

60

N

em

×

×

C

em

=

30,729 (times)

=

775

3

10

500

1,225

×

0.05

40

60

15

×

×

Model

Number of pins

(Z

4

)

Model

Number of pins

(Z

4

)

RV-25N

40

RV-125N

40

RV-42N

RV-160N

RV-60N

RV-380N

46

RV-80N

RV-500N

52

RV-100N

RV-700N

background image

31

Reduction gear selection method (2): Tentatively select a reduction gear model and evaluate the service life.

Setting/verifi cation item

Calculation formula

Selection examples (With horizontal rotational transfer)

(5) Verify the thrust load and moment load.

W

1

R adial load (N)

0 (N)

Distance to the point of radial
load application (mm)

0 (mm)

W

2

Thrust load (N)

2

Distance to the point of thrust
load application (mm)

0 (mm) (As the workpiece center is located on the
rotation axis)

M

Moment load (Nm)

RV-25N As dimension a = 22.1 (mm) and dimension b =
112.4 (mm):

Verify the thrust load and moment load

Check  that  the  thrust  load  and  moment  load  are
within the range in the allowable moment diagram on
page 33.

If the tentatively selected reduction gear is outside of
the specifi cations, change the reduction gear model.

For this example,
Thrust load [W

2

] = 2,548 (N)

Moment load [M] = 0 (N)
As  the  above  values  are  within  the  range  in  the
allowable moment diagram, the tentatively selected
model should be no problem.

(6) Verify the reduction gear service life.

L

h

Life (h)

Q

1cy

Number of cycles per day (times)

Q

3

Operating hours per day (h)

Q

4

Operating hours per year (h)

L

year

Reduction gear service life (year)

L

ex

Required life (year)

Based on the operation conditions

5 years

Verifi cation of the service life

Check the following condition:
[L

ex

] is equal to or less than [L

year

]

If the tentatively selected reduction gear is outside of the
specifi cations, change the reduction gear model.

[L

ex

] 5 (year) ≤ [L

year

] 195.7 (year)

According to the above condition, the tentatively selected
model should be no problem.

Select the reduction gear model that satisfi es all the conditions of the above verifi cation items.
The actual reduction ratio is determined based on the motor speed, input torque,and inertia
moment. Check with the motor manufacturer.

Based on the above verifi cation result, RV-25N is
selected.

(

)

1,000

2

2

1

W

W

b - a

M

×

+

+

×

=

a,b: Refer to the calculation
of the tilt angle on page 38.

W

1

W

2

a

b

2

Output shaft installation surface

(

)

( )

N

W

2,548

9.8

4

20

180

2

=

×

×

+

=

(Nm)

M

=

×

+

+

×

=

0

1,000

0

2,548

)

112.4 -22.1

0

(

0

3

10

0

0

6,000

×

×

=

m

m

h

T

T

N

N

L

3

10

6,000

=

=

h

L

107,242 (h)

3

.

110

245

12

15 ×

×

4

1

1

60

60

t

Q

Q

cy

×

×

=

(times)

2,160

20

60

60

12

1

=

×

×

=

cy

Q

(

)

3

2

1

3

60

60 ×

+

+

×

=

t

t

t

Q

1

Q

cy

(

)

(  )

h

Q

5

.

1

60

60

0.5+1.5+0.5

2,160

3

=

×

×

=

2

3

4

Q

Q

Q

×

=

Q

548 (h)

365

5

.

1

4

=

×

=

4

Q

L

L

year

h

=

(       )

year

L

year

195.7

548

107,242

=

=

background image

32

Setting/verifi cation item

Calculation formula

Selection examples (With horizontal rotational transfer)

T

M1

Motor momentary
maximum torque (Nm)

Determine based on the motor specifi cations.

For example, T

M1

= 10 (Nm)

T

M1OUT

Maximum torque generated at the
output shaft for the reduction gear
(Nm)

R: Actual reduction ratio
η : Startup effi ciency (%) ,refer to the rating table on page 9

For example, calculate the maximum torque generated at
the output shaft for the reduction gear based on the
specifi cations when RV-25N-164.07 was selected.

(When an external shock is applied at the time of an
emergency stop or motor stop)

T

M2OUT

Maximum torque generated at the
output shaft for the reduction gear
(Nm)

(When a shock is applied to the output shaft due to
hitting by an obstacle)

Limitation on motor torque value

Check the following condition:
The momentary maximum allowable
torque [T

S2

]

*1

is equal to or greater than the maximum torque

generated at the output shaft for the reduction gear
[T

M1OUT

] and [T

M2OUT

]

If the above condition is not satisfi ed, a limitation is imposed on the
maximum torque value of the motor.

*1 [T

S2

]: Refer to the rating table on page 9

[T

S2

] 1,225 (Nm) ≤ [T

M1OUT

] 2,051 (Nm) and

[T

M2OUT

] 1,313 (Nm)

According to the above condition, the torque limit is set for
the motor.

1

1

R

T

T

M

out

M

×

×

=

η

100

=

=

2,051(Nm)

1

164.07

10

T

out

M

×

×

100

80

1

2

R

T

T

M

out

M

×

×

=

100

η

=

=

1,313 (Nm)

2

164.07

10

T

out

M

×

×

80

100

Limitation on the motor torque

A limitation is imposed on the motor torque value so that the shock torque applied to the reduction gear does not exceed
the momentary maximum allowable torque.

background image

33

Thrust Load (N)

Allowable Moment (Nm)

RV-25N

RV-42N

RV-60N

RV-80N

2,500

0

8,000

6,530

5,880

5,220

3,720
3,570

3,320

2,610

1,830

2,000

1,770

2,150

1,860

1,660

1,490

784

725

RV-25N

42N60N80N

RV-100N

125N160N

Thrust Load (N)

Allowable Moment (Nm)

RV-100N

RV-125N

RV-160N

5,000

0

15,000

14,700

13,000

9,000

5,410

5,200
4,210

2,700

4,000

3,430

2,790

2,520

2,160

RV-380N

500N700N

Thrust Load (N)

Allowable Moment (Nm)

RV-380N

RV-500N

RV-700N

16,000

15,000

0

50,000

44,000

32,000

25,000

12,180

10,630

7,450

7,110

11,000

8,100

7,050

4,120

Allowable moment diagram

Product selection

background image

34

No-load running torque

Use the following formula to calculate the no-load running torque converted to the motor shaft.

No-load running torque converted to the motor shaft (Nm) =

(R: speed ratio value)

[Measurement conditions]

Case temperature: 30 (ºC)

Lubricant: Grease

(VIGOGREASE RE0)

Torque converted into the output shaft (Nm)

R

Note: The values in the following graphs are for the reduction gear alone, and indicate the average values after the break-in period.

0

0

10

20

30

40

50

60

20

40

60

80

100

120

140

160

180

200

No-load running torque (Reduced for the output shaft) (Nm)

Output rotation speed (rpm)

No-load running torque (Reduced for the output shaft) (Nm)

Output rotation speed (rpm)

No-load running torque (Reduced for the output shaft) (Nm)

Output rotation speed (rpm)

60N

42N

25N

0

0

5

10

15

20

25

30

35

40

50

100

150

200

300

250

350

160N

80N

125N

100N

RV-25N, 42N, 60N

0

0

5

10

15

20

200

400

600

800

1000

1200

700N

500N

RV-380N, 500N, 700N

RV-80N, 100N, 125N, 160N

380N

Technical data

background image

35

Low temperature characteristic

Note: Contact us regarding use of the RV-700N
at a low-temperature environment.

0

-20

-10

0

10

20

100

200

300

400

500

600

700

No-load running torque (Reduced value for the output shaft) (Nm)

No-load running torque (Reduced value for the output shaft) (Nm)

No-load running torque (Reduced value for the output shaft) (Nm)

Case temperature (°C)

Case temperature (°C)

Case temperature (°C)

60N

42N

25N

160N

80N

125N

100N

RV-25N, 42N, 60N

500N

RV-380N, 500N, 700N

RV-80N, 100N, 125N, 160N

0

-20

-10

0

10

20

200

400

600

800

1,000

1,200

1,400

1,600

0

-20

-10

0

10

20

1,000

2,000

3,000

4,000

5,000

6,000

When the RV-N reduction gear is used at a low temperature, viscosity of lubricant increases and causes a larger no-load
running torque. The no-load running torque at low temperature is shown below.
Use the following formula to calculate the no-load running torque converted to the motor shaft.

No-load running torque converted to the motor shaft (Nm) =

(R: speed ratio value)

Torque converted into the output shaft (Nm)

R

[Measurement conditions]

Input speed: 2,000 rpm

Lubricant: Grease

(VIGOGREASE RE0)

380N

Technical data

background image

36

[Measurement conditions]
Case temperature: 30 (ºC)
Lubricant: Grease (VIGOGREASE RE0)

Effi ciency table

75

0

150

225

300

15 (rpm)

30 (rpm)

60 (rpm)

Output

speed

Output

speed

Output

speed

Output

speed

Output

speed

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-25N

125

0

250

375

500

15 (rpm)
30 (rpm)
50 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-42N

200

0

400

600

800

15 (rpm)
30 (rpm)
50 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-60N

250

0

500

750

1,000

15 (rpm)
30 (rpm)
50 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-80N

300

0

600

900

1,200

15 (rpm)
30 (rpm)
45 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-100N

Technical data

background image

37

400

0

800

1,200

1,600

15 (rpm)
30 (rpm)
45 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-125N

500

0

1,000

1,500

2,000

15 (rpm)
25 (rpm)
35 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-160N

1,000

0

2,000

3,000

4,000

5 (rpm)

15 (rpm)
25 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-380N

1,500

0

3,000

4,500

6,000

5 (rpm)

15 (rpm)
25 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-500N

2,000

0

4,000

6,000

8,000

5 (rpm)

10 (rpm)
15 (rpm)

20

0

40

60

80

100

Efficiency (%)

Output torque (Nm)

RV-700N

Output

speed

Output

speed

Output

speed

Output

speed

Output

speed

background image

38

Calculation of tilt angle and torsion angle

1.0

Calculation of tilt angle


When a load moment occurs with an external load applied, the output shaft will tilt
in proportion to the load moment (If R

3

is larger than b, and R

2

is larger than c/2)

The moment rigidity indicates the rigidity of the main bearing, and it is
represented by the load moment value required for tilting the main
bearing by 1 arc.min.

RV-25N
RV-42N
RV-60N
RV-80N

RV-100N

530
840

1,140
1,190
1,400

Dimensions (mm)

Model

Moment rigidity

(central value)
(Nm/arc.min.)

RV-125N
RV-160N
RV-380N
RV-500N
RV-700N

1,600
2,050
5,200
6,850
9,000

Dimensions (mm)

Model

Moment rigidity

(central value)
(Nm/arc.min.)

41.6
35.0
48.7
56.3
66.3

a

173.2
194.0
248.9
271.7
323.5

b

154
168
210
232
283

c

RV-25N
RV-42N
RV-60N
RV-80N

RV-100N

61

113
200
212
312

Lost motion

Model

Torsional rigidity

(central value)

(Nm/arc.min.)

Backlash
(arc.min.)

1.0

1.0

Lost motion

(arc.min.)

±7.35
±12.4
±18.0
±23.5
±30.0

Measured torque

(Nm)

RV-125N
RV-160N
RV-380N
RV-500N
RV-700N

334
490

948

1,620
2,600

Lost motion

Model

Torsional rigidity

(central value)

(Nm/arc.min.)

Backlash
(arc.min.)

Lost motion

(arc.min.)

±36.8
±48.0

±112

±147
±210

Measured torque

(Nm)

Calculation of torsion angle


Calculate the torsion angle when the torque is applied in a single direction, using an example of RV-160N.
1)  When the load torque is 30 Nm..................Torsion angle (ST

1

)

• When the load torque is 3% or less of the rated torque

2)  When the load torque is 1,300 Nm..................Torsion angle (ST

2

)

• When the load torque is more than 3% of the rated torque

Note: 1. The torsion angles that are calculated above are for a single reduction gear.

30

ST

1

=

= 0.31(arc.min.) or less

×

48.0

1 (arc.min.)

2

1

ST

2

=

= 3.06 (arc.min.)

+

2

1,300 - 48.0

490

22.1

29
35

33.8
38.1

a

112.4
131.1
147.0
151.8
168.2

b

91

111
130
133
148

c

Output shaft installation surface

1.0

W

1

1

+

W

2

2

θ

=

M

1

×

10

3

θ

: Tilt angle of the output shaft (arc.min.)

M

1

: Moment rigidity (Nm/arc.min.)

W

1

, W

2

: Load (N)

1

, ℓ

2

: Distance to the point of load application

(mm)

1

:

+

− a

: Distance from the output shaft installation

surface to the point of load application (mm)

b

2

Technical data

background image

39

Reduction gear installation components

Installation of the reduction gear and mounting it to the output shaft

<Bolt tightening torque and tightening force>

Hexagon socket head cap screw

<Calculation of allowable transmission torque of bolts>

Serrated lock washer external teeth for hexagon socket head cap screw

When installing the reduction gear and mounting it to the output shaft, use hexagon socket head cap screws and tighten
to the torque, as specified below, in order to satisfy the momentary maximum allowable torque, which is noted in the
rating table.
The use of the Belleville spring washers are recommended to prevent the bolt from loosening and protect the bolt seat
surface from flaws.

Name:Belleville spring washer (made by Heiwa Hatsujyo Industry Co., Ltd.)
Corporation symbol: CDW-H

CDW-L (Only for M5)

Material: S50C to S70C
Hardness: HRC40 to 48

Note: 1. The tightening torque values listed are for steel or cast iron material.
2. If softer material, such as aluminum or stainless, is used, limit the tightening torque. Also take the transmission torque
and load moment into due consideration.

Note: When using any equivalent washer, select it with special care given to its outside diameter.

D

2

×

1,000

T = F

×

μ ×

×

n

Ø

D

t

H

Ø

d

T

Allowable transmission torque by tightening bolt (Nm)

F

Bolt tightening force (N)

D

Bolt mounting P.C.D. (mm)

μ

Friction factor

μ=0.15: When Iubricant remains on the mating face.
μ=0.20: When Iubricant  is removed from the mating face.
n

Number of bolts (pcs.)

Hexagon socket head

cap screw

nominal size x pitch

(mm)

M5   × 0.8

M6   × 1.0

M8   × 1.25

M10 × 1.5

M12 × 1.75

M16 × 2.0

9.01 ± 0.49

15.6 ± 0.78

37.2 ± 1.86

73.5 ± 3.43

129  ± 6.37

319  ± 15.9

9,310

13,180

23,960

38,080

55,100

103,410

Hexagon socket head cap screw
JIS B 1176: 2006 or equivalent (ISO 4762)
Strength class
JIS B 1051: 2000 12.9 or equivalent (ISO 898-1)
Thread
JIS B 0209: 2001 6g or equivalent

Tightening torque

(Nm)

Tightening force

F

(N)

Bolt specification

Nominal

size

ID and OD of

Belleville

spring washer

Ød

5
6
8

10
12
16

5.25

6.4
8.4

10.6
12.6
16.9

ØD

8.5

10
13
16
18
24

t

0.6
1.0
1.2
1.5
1.8
2.3

H

0.85
1.25
1.55

1.9
2.2
2.8

(Unit: mm)

Design points

background image

40

Design of the motor mounting flange


In order to avoid contact with reduction gear components, refer to the sizes indicated in the “Outer dimensions” drawings
when designing the motor mounting flange.

Note: The size and number of bolts for the motor mounting flange should be determined with the torque and moment

taken into consideration, and should be positioned in line with the reduction gear’s case mounting holes.
After installing the reduction gear, we recommend installing an add/drain grease fitting to enable grease
replacement. An installation example is shown below.
Use the specified tightening torque to uniformly tighten the hexagon socket head cap screws (with
corresponding conical spring washers).

Design the motor mounting flange to the following accuracy.
If the installation accuracy is poor, it will result in vibration and noise.

RV-25N

RV-42N

RV-60N

RV-80N

RV-100N

MAX

Ø

0.03

MAX

Ø

0.03

MAX

Ø

0.03

MAX

Ø

0.03

MAX

Ø

0.03

Model

Concentricity tolerance

a      (mm)

RV-125N

RV-160N

RV-380N

RV-500N

RV-700N

MAX

Ø

0.03

MAX

Ø

0.03

MAX

Ø

0.05

MAX

Ø

0.05

MAX

Ø

0.05

Model

Concentricity tolerance

a      (mm)

Design of the case and shaft installation components


Align the case bolt holes with the tapped holes of the
installation components, and the tapped holes of the
shaft with the installation component bolt holes, and
install the case with the designated number of bolts.
Use the specified tightening torque to uniformly
tighten the hexagon socket head cap screws (with
corresponding conical spring washers). Use either the
outside or inside fit for the shaft.
After installing the reduction gear, we recommend
installing an add/drain grease fitting to enable grease
replacement. An installation example is shown at right.

Installation accuracy

Suited O-rings for O-Ring (I) in the diagram above are indicated in the following tables. Refer to these tables when
designing seals for the installation components.

* S110 is the manufacturer’s own standard.

Note: If it is difficult to purchase any of the O-rings in the table above, select an O-ring based on the design standard of each

manufacturer by referring to the dimensions listed above.

O-Ring (I)

Note: Always verify after installation that each bolt has been
tightened at the specified torque.

Bolt holes for

shaft installation

component

Outside fit

Conical

spring

washer

Tapped hole of the case installation

components

Inside fit

Add/Drain

grease fitting

Conical spring washer

O-Ring (I)

Case mounting holes

Add/Drain grease fitting

JIS B 2401: 2012, SAE AS568

Model

O-ring number

O-ring dimensions

Inside diameter

Width

RV-25N
RV-42N
RV-60N
RV-80N

RV-100N

S110*

AS568-159
AS568-258
AS568-258
AS568-166

Ø109.5

Ø126.67
Ø151.99
Ø151.99
Ø171.12

Ø2.0

Ø2.62
Ø3.53
Ø3.53
Ø2.62

Model

O-ring number

O-ring dimensions

(Unit: mm)

(Unit: mm)

Inside diameter

Width

RV-125N
RV-160N
RV-380N
RV-500N
RV-700N

AS568-167
AS568-170
AS568-272
AS568-275

G340

Ø177.47
Ø196.52
Ø240.89
Ø266.29

Ø339.3

Ø2.62
Ø2.62
Ø3.53
Ø3.53

Ø5.7

background image

41

Suited O-rings for O-Ring (I) in the diagram above are indicated in the following tables. Refer to
these tables when designing seals for the installation components.

Refer to the diagram at right and apply the sealant so that it does not get inside
the reduction gear and does not leak out of the shaft installation bolt hole.

Note: 1. Do not use for copper or a copper alloy.
2. Contact us regarding use under special conditions (concentrated alkali, high-pressure steam, etc.)

Example application

ThreeBond 1211

(ThreeBond Co.)

HermeSeal SS-60F

(Nihon Hermetics Co.)

Loctite 515

(Henkel)

• Silicone-based, solventless type
• Semi-dry gasket

• One-part, non-solvent elastic sealant
• Metal contact side (flange surface) seal
• Any product basically equivalent to ThreeBond 1211

• Anaerobic flange sealant
• Metal contact side (flange surface) seal

Name (Manufacturer)

Characteristics and applications

O-ring (II)

Shaft installation

component

Add/Drain

grease fitting

· For RV-160N, 380N, 500N and 700N models

O-Ring (II)

JIS B 2401: 2012

Model

Bearing

number

O-ring dimensions

Inside diameter

Width

RV-160N
RV-380N
RV-500N
RV-700N

G130
G145
G185
G200

Ø129.4
Ø144.4
Ø184.3
Ø199.3

Ø3.1
Ø3.1
Ø5.7
Ø5.7

(Unit: mm)

Note: If it is difficult to purchase any of the O-rings in the table above, select an O-ring based on the design
standard of each manufacturer by referring to the dimensions listed above.

If a model other than those listed above is used or an O-ring cannot be used for structural reasons, seal the part by referring to the
following instructions.

Recommended liquid sealant

Area to apply liquid sealant

background image

42

Input gears

Design points

We  have  a  variety  of  standard  input  gears  for  each  model  and  speed  ratio  that  can  be  additionally  machined  by  the
customers.
Please machine and install the standard input gear based on the customer’s intended use, by referring to the following
examples.

<Standard input gear B: For large motors>

<Standard input gear A: For small motors>

Note: The above drawing shows the shape before the additional machining is performed.
Check the dimensions of each section in the “Dimensions” table on pages 46 and 47.

(Carburizing prevention range)

Ø

d4

L D

JIS B1011: 1987

60º center hole, type A

Ø

D1

L B

(Plunge grinding section)

L

L A

Ø

D2

(Plunge grinding section)(Plunge grinding section)

L E

(Carburizing prevention range)

Ø

d4

Ø

D2

(Plunge grinding section)(Plunge grinding section)

L E

L D

L A

L

L B

(Plunge grinding section)

Ø

D1

JIS B1011: 1987

60º center hole, type A

G

Ø

D1

Material

Heat treatment

Carburizing, quenching and tempering

Surface hardness

HRC58 to 62 (excluding the carburizing prevention range)

Material

SCM415 Normalizing or equivalent material

· Reference for additional machining

Standard input gears come equipped with center holes.
When modifying them, be sure to grind the boss outer diameter (D1) with reference to the center hole, and use it as the
reference surface.

Design of the input gear

Please refer to the chart below. Use it as a reference when the customer designs an input gear on their own.

• Design flow

Standard input gear specifications

When modifying the standard input gear

Start designing

Select the input gear type

(standard gear A or B)

Design of the motor shaft hole

Design the oil seal area

Completed

YES

NO

Oil-seal on D2 area?

Refer to page 43

Refer to pages 43 to 45

Refer to page 45

When manufacturing a special input gear

Start designing

Check the gear tooth specifications

Design of the motor shaft hole

Design the oil seal area

Completed

YES

NO

Oil-seal on D2 area?

Refer to pages 48 and 49

Refer to pages 43 to 45

Refer to page 45

background image

43

• Design of the motor shaft hole

Model

Standard  input gear

A

Standard input gear

B

Model

Standard  input gear

A

Standard  input gear

B

RV-25N

Less than Ø28

Ø28 or more

RV-125N

Ø42 or less

RV-42N

Less than Ø32

Ø32 or more

RV-160N

Ø48 or less

RV-60N

Less than Ø32

Ø32 or more

RV-380N

Less than Ø55

Ø55 or more

RV-80N

Less than Ø38

Ø38 or more

RV-500N

Less than Ø55

Ø55 or more

RV-100N

Ø42 or less

RV-700N

Less than Ø55

Ø55 or more

Drill both at the same time

P.C.D.

d5 drill

Ød3 30°

1

MIN

E

LC

0.1 – 0.3

Detailed drawing of section E

d1∙1.5

5(Ød1<25)
7(Ød1≥25)

Ød1+1.5

Ød1

a

3

MIN

k

30°

Ød1-3(Ød1

≤22

)

Ød1-6(Ød1

>22

)

Installation reference surface

Clearance

Image of assembly

There are the two types of standard input gear:
Standard input gear A: For small motors

Standard input gear B: For large motors
Select the type of input gear to be used by referring to the tables below.

Applicable motor shaft diameters for standard input gear

(Unit: mm)

(Unit: mm)

Note: 1. When a tapped hole is used for the motor shaft, fix the input gear to the motor shaft with a bolt.
2. For the bolt through hole diameter (d3), radial runout, and the shaft hole position (LC), refer to
“Dimensions after modification” in the “Dimensions” table on pages 46 and 47.
3. If the bolt through hole diameter (d3) is larger than the center hole diameter on the tooth surface side
(d4), it is necessary to process the carburized surface. In such a case, confirm the applicable tools and
processing conditions, etc.
4. The clearance hole diameter for the key slot (d5) is “key slot width (k) + 2 mm”, approximately.
[The clearance hole diameter must be larger than the key slot width (k).]
5. Design the motor shaft hole diameter (d1) according to the motor shaft diameter to be used.
6. For the key slot width (k) and key slot height (a), refer to the specifications of the key to be used.

Note: Some models have only standard input gear A.

• Selection of the input gear type

<Design example 1: For straight shafts (attached to motor shaft tip)>

background image

44

Set the diameter of the recessed groove (d2) so that it is larger than the corner
of the key slot.
Although  the  following  calculation  formula  is  used  in  this  example,  design  the
diameter  using  appropriate  values,  based  on  the  key  groove  tolerance,
processing tolerance, etc.

The  following  is  an  example  of  when  the  diameter  of  the  recessed  groove  is
selected  based  on  the  above  calculation  formula.  Use  it  as  a  reference  when
designing.

· Recessed groove diameter for key slot

Drill both at the same time

P.C.D.

3

MIN

LC

d1∙1.5

5(Ød1<25)
7(Ød1≥25)

Ød1+1.5

Ød1

30°

Ød2

Plunge grinding range

Tapped hole for set screw

a

3

MIN

k

Clearance

Installation reference surface

Image of assembly

k

a

Ød1

(Recessed groove diameter)

2

k

2

d1

+

-

a

2

2

2

k

2

d1

d2

+

+

-

a

2

2

0.5

2

2

k

2

d1

d2

+

+

-

a

2

2

0.5

2

Motor shaft hole

diameter

Ød1

Key slot width

k

Key slot height

a

Recessed

groove diameter

Ød2

Motor shaft hole

diameter

Ød1

Key slot width

k

Key slot height

a

Recessed

groove diameter

Ød2

8

3

9.4

12

22

8

25.3

31

9

3

10.4

13

24

8

27.3

33

10

4

11.8

15

25

8

28.3

34

11

4

12.8

16

28

8

31.3

37

14

5

16.3

20

32

10

35.3

41

15

5

17.3

21

35

10

38.3

44

16

5

18.3

22

38

10

41.3

47

17

6

19.8

24

38

12

41.3

47

19

6

21.8

26

42

12

45.3

51

<Design example 2: For straight shafts (attached to motor shaft base)>

Note: 1. When a tapped hole is not used for the motor shaft, fix the input gear to the motor shaft with a set
screw.
2. If a clearance hole for the key slot cannot be drilled due to some reason, such as the plunge grinding
area being located on the outer periphery, create a recessed groove instead.
3. For the radial runout and the shaft hole position (LC), refer to “Dimensions after modification” in the
“Dimensions” table on pages 46 and 47.
4. Design the motor shaft hole diameter (d1) according to the motor shaft diameter to be used.
5. For the key slot width (k) and key slot height (a), refer to the specifications of the key to be used.
6. Design the diameter of the recessed groove for the key slot (d2) according to the following
instructions.

Selection example of recessed groove diameter (d2)

(Unit: mm)

(Unit: mm)

background image

45

<Design example 4>

• Design of the oil seal area

Note: 1. The design specifications vary depending on the oil seal manufacturer. When designing, be sure to
confirm with the manufacturer of the oil seal to be used.
2. If the plunge grinding diameter (D2) is processed using a value other than those listed in the
“Dimensions” table on pages 46 and 47, appropriate surface hardness may not be obtained.
3. Rubber containing fluorine is recommended for the material of the oil seal.
4. When assembling the oil seal, be careful to avoid any contact between the lip section and the gear, as it
causes scratches.
5. Design the oil seal with reference to the oil seal assembly position (LF), so that the lip section of the oil
seal does not fall off from the plunge grinding range (LB).

Tapered to 1/10

P.C.D.

30°

LC

Ø

d1

Ø

d3

Ø

d1+1.5

30°

a

3

MIN

k

d5 drill

Z

Clearance:1

MIN

(Dihedral chamfer)

Cross-section

of Z-Z

Z

Clearance: 0.25

MIN

Clearance: 0.25

MIN

Clearance: 0.25

MIN

(Dihedral chamfer)

Cross-section

of Z-Z

Z

Clearance: 0.25

MIN

Z

Clearance:1

MIN

(Plunge grinding)

Seal with seal washer, etc.

No edge

Ø

D2

Ø

0.05

0.4

G

LB (plunge grinding range)

LF

Note: 1. For the bolt through hole diameter (d3), radial runout, and the shaft hole position (LC), refer to
“Dimensions after modification” in the “Dimensions” table on pages 46 and 47.
2. Design the motor shaft hole diameter (d1) according to the motor shaft diameter to be used.
3. For the key slot width (k) and key slot height (a), refer to the specifications of the key to be used.
4. There are two ways to fix the tapered shaft to the motor shaft: draw nut and draw bolt. Fix the shaft
using either of them, referring to the drawings below.
5. You can manufacture the draw nut and draw bolt on your own, or contact us.

<Design example 3: For tapered shafts>

· When fixing with a draw nut

· When fixing with a draw bolt

The D2 section can be used as a lip surface for the oil seal by plunge grinding.

background image

46

Installation of the input gear

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

41

40.4

11

8

13

126.1 57.1

14

41

139.6 57.1

14

54 40h8

17.6

0.055

51.4

60.1

66

81

9

7

12

129

60

142.5

60

10.8

0.050

54.3

63

107.66

9

7

12

129

60

142.5

60

9.6

0.047

54.3

63

126

7

7

12

129

60

142.5

60

8.0

0.047

54.3

63

137

7

7

12

129

60

142.5

60

7.2

0.043

54.3

63

164.07

5.5 6

13

129

60

142.5

60

5.6

0.043

54.3

63

<Model: RV-25N> (Unit: mm)

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

41

50.4

11

8

15

135.6 61.6

15.5 50.4

146.6 64.1

18

57 50h8

26.8

0.055

57.7

58.7

67

81

11

8

12.5

138.5 64.5

149.5

67

15.6

0.050

60.6

61.6

105

11

8

12.5

138.5 64.5

149.5

67

11.8

0.050

60.6

61.6

126

9

7

12.5

138.5 64.5

149.5

67

10.5

0.047

60.6

61.6

141

7

7

12.5

138.5 64.5

149.5

67

8.1

0.050

60.6

61.6

164.07

7

7

12.5

138.5 64.5

149.5

67

7.5

0.047

60.6

61.6

<Model: RV-42N> (Unit: mm)

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

41

50.4

11

8

14

136.1 62.1

15.5 50.4

147.1 64.6

18

57 50h8

30.0

0.055

58.2

59.2

68

81

11

8

13.5

139

65

150

67.5

17.2

0.055

61.1

62.1

102.17

11

8

13.5

139

65

150

67.5

13.7

0.050

61.1

62.1

121

11

8

13.5

139

65

150

67.5

11.8

0.050

61.1

62.1

145.61

7

7

13.5

139

65

150

67.5

8.7

0.050

61.1

62.1

161

7

7

13.5

139

65

150

67.5

8.1

0.050

61.1

62.1

<Model: RV-60N> (Unit: mm)

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

41

55.4

11

8

17.5

146

65.5

15.5 55.4

185

68

18

60 55h8

30.7

0.055

61.6

64

74

81

11

8

16

148.9 68.4

187.9 70.9

17.6

0.055

64.5

66.9

101

11

8

14.5

148.9 68.4

187.9 70.9

15.6

0.050

64.5

66.9

129

11

8

14.5

148.9 68.4

187.9 70.9

11.8

0.050

64.5

66.9

141

9

7

14.5

148.9 68.4

187.9 70.9

10.6

0.050

64.5

66.9

171

7

7

14.5

148.9 68.4

187.9 70.9

8.1

0.050

64.5

66.9

<Model: RV-80N> (Unit: mm)

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

41

60.4

11

8

19

182.2 67.2

15.5 60.4

60h8

36.7

0.055

65.7

74

81

11

8

15

185.1 70.1

20.2

0.055

68.6

102.17

11

8

15

185.1 70.1

17.2

0.055

68.6

121

11

8

15

185.1 70.1

13.2

0.050

68.6

141

11

8

15

185.1 70.1

13.1

0.050

68.6

161

9

7

15

185.1 70.1

9.7

0.050

68.6

<Model: RV-100N> (Unit: mm)

background image

47

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

41

60.4

11

8

19

182.2 67.2

15.5 60.4

60h8

36.7

0.055

65.7

77

81

11

8

15

185.1 70.1

21.7

0.055

68.6

102.17

11

8

15

185.1 70.1

17.2

0.055

68.6

121

11

8

15

185.1 70.1

14.2

0.050

68.6

145.61

11

8

15

185.1 70.1

11.2

0.050

68.6

161

9

7

15

185.1 70.1

9.7

0.050

68.6

<Model: RV-125N> (Unit: mm)

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

41

65.4

11

8

17

187.1 72.1

15.5 65.4

65h8

37.0

0.059

72.6

83

81

11

8

16.5

190

75

23.9

0.055

75.5

102.81

11

8

16.5

190

75

20.6

0.055

75.5

125.21

11

8

16.5

190

75

16.8

0.050

75.5

156

11

8

16.5

190

75

13.1

0.050

75.5

201

9

7

16.5

190

75

9.3

0.050

75.5

<Model: RV-160N> (Unit: mm)

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

75

65.4

11

8

21

190.1 75.1

15.5 65.4

196.6 77.6

18

72 65h8

33.0

0.059

75.6

80.6

97

93

11

8

21

190.1 75.1

196.6 77.6

27.0

0.059

75.6

80.6

117

11

8

23.5

193

78

199.5 80.5

25.5

0.055

78.5

83.5

139

11

8

23.5

193

78

199.5 80.5

22.5

0.055

78.5

83.5

162

11

8

23.5

193

78

199.5 80.5

18.0

0.055

78.5

83.5

185

11

8

23.5

193

78

199.5 80.5

18.0

0.047

78.5

83.5

<Model: RV-380N> (Unit: mm)

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

81

65.4

11

8

22.5

189.6 74.6

16.5 65.4

222.1 77.1

19

78 65h8

39.0

0.066

74.1

80.1

93

105

11

8

23

192.5 77.5

225

80

32.3

0.059

77

83

123

11

8

22

192.5 77.5

225

80

30.7

0.055

77

83

144

11

8

22

192.5 77.5

225

80

28.1

0.055

77

83

159

11

8

23

192.5 77.5

225

80

25.6

0.055

77

83

192.75

11

8

22

192.5 77.5

225

80

18.3

0.059

77

83

<Model: RV-500N> (Unit: mm)

Ratio
code

Dimensions before modifi cation (when shipped)

Dimensions after modifi cation

Assembly

dimensions

ØD2 Ød4 LE LD

+2.0

0

[Standard input gear A]

[Standard input gear B]

ØD2 Ød3

MAX

Radial

runout

[Standard input gear A] [Standard input gear B]

LF

L

LA

LB ØD1

L

LA

LB ØD1

LC

MIN

LC

MIN

105

65.4

11

8

22

192.5 77.5

15.5 65.4

225

80

18

78 65h8

42.0

0.066

78

83

103

118

11

8

22

192.5 77.5

225

80

38.3

0.059

78

83

142.44

11

8

22

192.5 77.5

225

80

33.2

0.059

78

83

159

11

8

22

192.5 77.5

225

80

31.7

0.055

78

83

183

11

8

22

192.5 77.5

225

80

23.6

0.059

78

83

203.52

11

8

22

192.5 77.5

225

80

22.7

0.059

78

83

<Model: RV-700N> (Unit: mm)

background image

48

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-25N

41

1.25

21

-0.193

-0.017

5.738

-0.042

( 2 )

13

Tooth profile

Pressure angle (°)

Precision

Common specifications

Full depth

20

JIS B 1702:1976, grade 5

Heat treatment

Surface hardness

Effective case depth

Material

Alternate material

*1. The values for some RV-25N and RV-42N units will differ depending on the module.

Spur gear tooth surface hardness and material

Carburizing, quenching and tempering

HRC 58 to 62

0.3 to 0.7

*1

SCM415 Normalizing
SCM420 Normalizing

Model

Module

Effective case depth<Hv 513>(mm)

RV-25N

0.8

0.2 to 0.6

1.25

0.3 to 0.7

RV-42N

1.0

0.2 to 0.6

1.25

0.3 to 0.7

81

1.25

14

+0.6

-0.017

9.984

-0.042

( 3 )

12

107.66

0.8

18

+0.25

-0.017

6.243

-0.042

( 3 )

12

126

0.8

16

+0.25

-0.017

6.220

-0.042

( 3 )

12

137

0.8

15

+0.25

-0.017

6.210

-0.042

( 3 )

12

164.07

0.8

13

+0.25

-0.017

3.825

-0.042

( 2 )

13

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-60N

41

1.25

30

+0.25

-0.023

13.655

-0.061

( 4 )

14

81

1.5

17

+0.5

-0.023

11.941

-0.061

( 3 )

13.5

102.17

1.25

17

+0.25

-0.023

9.737

-0.061

( 3 )

13.5

121

1.25

15

+0.5

-0.023

9.916

-0.061

( 3 )

13.5

145.61

1.25

13

+0.25

-0.023

5.977

-0.061

( 2 )

13.5

161

1.25

12

+0.5

-0.023

9.863

-0.061

( 3 )

13.5

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-42N

41

1.25

27

+0.5

-0.017

13.816

-0.042

( 4 )

15

81

1.25

18

+0.5

-0.017

9.968

-0.042

( 3 )

12.5

105

1.25

15

+0.5

-0.017

9.916

-0.042

( 3 )

12.5

126

1.0

16

+0.5

-0.017

7.946

-0.042

( 3 )

12.5

141

1.25

12

+0.5

-0.017

9.863

-0.042

( 3 )

12.5

164.07

1.0

13

+0.5

-0.017

7.904

-0.042

( 3 )

12.5

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-80N

41

1.5

27

0

-0.023

16.065

-0.061

( 4 )

17.5

81

1.25

21

-0.193

-0.023

5.738

-0.061

( 2 )

16

101

1.25

18

+0.5

-0.023

9.968

-0.061

( 3 )

14.5

129

1.25

15

+0.5

-0.023

9.916

-0.061

( 3 )

14.5

141

1.25

14

+0.5

-0.023

9.898

-0.061

( 3 )

14.5

171

1.25

12

+0.5

-0.023

9.863

-0.061

( 3 )

14.5

Refer to the specifications and materials shown in the following tables when designing with a processed or non-standard input gear.

<Specifications by model>

Effective face width

3.2

Gear tooth specifications

background image

49

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-100N

41

1.5

30

+0.5

-0.023

21.070

-0.061

( 5 )

19

81

1.5

20

0

-0.023

11.491

-0.061

( 3 )

15

102.17

1.5

17

+0.5

-0.023

11.941

-0.061

( 3 )

15

121

1.5

15

+0.15

-0.023

7.111

-0.061

( 2 )

15

141

1.25

16

+0.5

-0.023

9.933

-0.061

( 3 )

15

161

1.5

12

+0.5

-0.023

11.836

-0.061

( 3 )

15

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-125N

41

1.5

30

+0.5

-0.023

21.070

-0.061

( 5 )

19

81

1.5

20

+0.5

-0.023

12.004

-0.061

( 3 )

15

102.17

1.5

17

+0.5

-0.023

11.941

-0.061

( 3 )

15

121

1.5

15

+0.5

-0.023

11.900

-0.061

( 3 )

15

145.61

1.5

13

+0.5

-0.023

11.857

-0.061

( 3 )

15

161

1.5

12

+0.5

-0.023

11.836

-0.061

( 3 )

15

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-160N

41

2.0

24

+0.5

-0.035

22.021

-0.085

( 4 )

17

81

1.5

22

+0.228

-0.035

11.766

-0.085

( 3 )

16.5

102.81

1.25

22

+0.5

-0.035

13.728

-0.085

(

4)

16.5

125.21

1.25

19

+0.5

-0.035

9.986

-0.085

(

3 )

16.5

156

1.25

16

+0.5

-0.035

9.933

-0.085

( 3 )

16.5

201

1.25

13

+0.5

-0.035

9.881

-0.085

( 3 )

16.5

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-500N

81

2.0

26

0

-0.035

15.489

-0.085

( 3 )

22.5

105

1.75

25

0

-0.035

13.528

-0.085

( 3 )

23

123

1.5

26

+0.5

-0.035

16.558

-0.085

( 4 )

22

144

1.25

28

+0.5

-0.035

13.833

-0.085

( 4 )

22

159

1.25

26

+0.5

-0.035

13.798

-0.085

( 4 )

23

192.75

1.75

16

+0.5

-0.035

13.906

-0.085

( 3 )

22

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-700N

105

2.0

27

+0.25

-0.035

21.763

-0.085

( 4 )

22

118

2.0

24

+0.847

-0.035

22.496

-0.085

( 4 )

22

142.44

1.75

25

+0.25

-0.035

18.994

-0.085

( 4 )

22

159

1.5

26

+0.824

-0.035

21.318

-0.085

( 5 )

22

183

2.0

18

+0.15

-0.035

15.470

-0.085

( 3 )

22

203.52

1.75

19

+0.25

-0.035

13.681

-0.085

( 3 )

22

75

2.0

23

0

-0.035

15.405

-0.085

( 3 )

21

93

2.0

20

0

-0.035

15.321

-0.085

( 3 )

21

117

1.5

23

+0.25

-0.035

11.810

-0.085

( 3 )

23.5

139

1.25

24

+0.25

-0.035

13.550

-0.085

( 4 )

23.5

162

1.5

18

+0.25

-0.035

11.705

-0.085

( 3 )

23.5

185

1.0

24

+0.25

-0.035

10.840

-0.085

( 4 )

23.5

Model

Ratio code

Module

No. of teeth

Shift coefficient

Base tangent length(mm)

No. of teeth

Min. effective face width (mm)

RV-380N

background image

50

Amount of lubricant


RV precision reduction gears are not applied with lubricant when shipped. Be sure to design your equipment so that the
necessary amount of our authorized lubricant can be applied. (When pneumatic pressure is used for applying the
lubricant, set the pressure below 0.03 MPa.)
The amount of grease the reduction gear requires will differ according to the orientation in which the gear is installed. The
amount of grease required and the target range (the             areas in the diagram) are indicated below for each direction
of installation.
Note: 1. The spaces (indicated by the            and            areas in the diagram) on the shaft installation side and
the motor installation side are not included in the target range but should also be filled. However, since
there is a possibility of high internal pressure and that an oil seal may fall off or lubricant may leak if
overfilled, be sure to leave about 10% of the total volume

*1

of those spaces and the space inside the

reduction gear.
*1. Total volume: Volume of the space inside the reduction gear + volume of            and
2. Control the amount of lubricant to be applied when replacing the lubricant as well.

3. As the seal cap attached to the center hole of the reduction gear will be used for adjusting the flow of

the lubricant when it is applied, do not remove it.

Lubricant


The standard lubricant for RV precision reduction gears is grease.
In order to take advantage of the performance of RV precision reduction gears, we recommend using Nabtesco
VIGOGREASE RE0 grease.
VIGOGREASE was specifically developed for use with Nabtesco products and does not take into account the use with
products from other companies.
It is therefore recommended that you refrain from using VIGOGREASE with products from any other company.
Should for any reason it be necessary to use VIGOGREASE with another company’s product, Nabtesco assumes no
responsibility whatsoever for any breakdown, malfunction, or other trouble such as with the corresponding reduction
gear, the equipment or system it is used in.
In such cases, it should also be understood that Nabtesco cannot comply with any request to inspect the quality of the
corresponding grease, etc.

Nabtesco

VIGOGREASE RE0

Grease

<Approved lubricant brand>

<Horizontal shaft installation>

Note: Do not mix with other lubricants.

RV-25N

RV-42N

RV-60N

RV-80N

RV-100N

RV-125N

RV-160N

RV-380N

RV-500N

RV-700N

185

313

381

504

705

736

860

1,811

2,245

3,780

Model

Required amount

(cc)

223

377

459

607

849

887

1,036

2,182

2,704

4,554

Internal capacity

of reduction gear

(cc)

(167)

(282)

(343)

(454)

(635)

(662)

(774)

(1,630)

(2,021)

(3,402)

(g)

*

1

Dimensions

a

*

2

(mm)

32.2

32.5

32.3

37.6

36.9

40.7

40.1

54.2

53.4

62.2

*1. Density of VIGOGREASE RE0: 0.9 g/cc

*2. “a” does not correspond to the crank shaft tip position.

Add/

drain lubricant

fitting

Add/

drain lubricant

fitting

Lubricant

surface

Shaft installation

component

Target range

Motor

d

3/4d

a

Lubricant VIGOGREASE

®

Design points

background image

51

<Vertical shaft installation (1)>

Ambient temperature(°C)

-10

-10

40

60

40

Note: 1. Set the amount of grease so that there is no space below the grease surface, or in the motor installation
side of “Vertical shaft installation (2)” (the             area in the diagram above).
2. When inserting the required amount of lubricant, allow space above the grease surface so that the fill
rate does not exceed 90%. (Ex.: The             area in the “Vertical shaft installation (2)” diagram.)

Grease replacement time


During proper operation of the reduction gear, the standard grease replacement time
due to lubricant degradation is 20,000 hours.
However, when operation involves a reduction gear surface temperature above 40°C
(the             area in the right diagram), the state of the lubricant should be checked in
advance and the grease replaced earlier as necessary.

Reduction gear surface temperatur

e(°C)

RV-25N

RV-42N

RV-60N

RV-80N

RV-100N

211

358

436

577

807

223

377

459

607

849

Model

Required amount

(cc)

(190)

(322)

(392)

(519)

(726)

(g)*

1

Dimensions a*

2

(mm)

32.2

32.5

32.3

37.6

36.9

Internal capacity
of reduction gear

(cc)

RV-125N

RV-160N

RV-380N

RV-500N

RV-700N

843

984

2,073

2,569

4,327

887

1,036

2,182

2,704

4,554

Model

Required amount

(cc)

(759)

(886)

(1,866)

(2,312)

(3,894)

(g)*

1

Dimensions a*

2

(mm)

40.7

40.1

54.2

53.4

62.2

Internal capacity
of reduction gear

(cc)

*1. Density of VIGOGREASE RE0: 0.9 g/cc
*2. “a” does not correspond to the crank shaft tip position.

Shaft installation

component

Add/Drain grease fitting

Target range

a

Add/

Drain grease fitting

Motor

Grease surface

Grease surface

Add/Drain grease fitting

Target range

a

Motor

Add/Drain

grease fitting

Space for a 90% or less

fill ratio (Note 2)

Shaft installation component

<Vertical shaft installation (2)>

background image

52

Inertia moment calculation formula

Shape

I(kgm

2

)

Shape

I(kgm

2

)

1. Cylinder solid

2. Cylinder hollow

3. Oval cross section

4. Rectangle

5. General application

6. Horizontal movement by conveyor

7. Horizontal movement by lead screw

8. Up/down movement by hoist

9. Parallel axis theorem

y

x

a

M R

I

M(kg)

M

1

(kg)

M

1

(kg)

M(kg)

Center axis

Rotation axis

η(m)

I

0

I

M(kg)

R(m)

R(m)

M

3

(kg)

M

4

(kg)

M

2

(kg)

M

2

(kg)

R(m)

N(rpm)

N(rpm)

N(rpm)

Lead: P(m/rev)

V(m/min)

V(m/min)

V(m/min)

M(kg)

M(kg)

M(kg)

M(kg)

V(m/min)

R(m)

N(rpm)

X

X

Y

Z

Z

X

Z

X

Z

Z

Y

Z

Y

Z

Y

Z

a(m)

a(m)

a(m)

a(m)

b(m)

b(m)

c(m)

c(m)

R(m)

2R(m)

2R

1

(m)

2R

2

(m)

R

1

(m)

R

2

(m)

z

I

y

I

I

R

M

=

+

=

=

y

x

I

z

I

y

I

I

=

=

=

3

4

1

2

1

2

2

R

2

2

(

)

(

)

M

M R

R

+

+

+

4

1

2

1

2

1

2

2

2

1

(

)

R

R

+

2

2

2

1

M

1

M

2

R

2

R

2

2

y

x

I

z

I

I

=

=

b

2

+c

2

(

)

b

2

+ c

2

= 14

16

1 M

y

x

I

z

I

I

=

=

=

12

1 M

(

)

a

2

+ c

2

12

1 M

(

)

a

2

+ b

2

12

1 M

M

1

4 M

4

M

2

MR

N

π

V

I

=

×

=

a

+

3

2

c

4

2

a

+

3

2

b

4

2

2

4

M

4

M

π

P

N

π

V

=

×

2

2

2

M

1

M

2

M

3

I

×

+

M

4

+

+

=

I =

I =

+

I

M η

0

0

I
I

I

=

: Moment of inertia of any

object about an axis

through its center of mass

: Moment of inertia about

any axis parallel to the axis

through its center of mass

η

: Perpendicular distance

between the above two axes

a

3

2

Appendix

background image

53

Check the following items in the case of trouble like abnormal noise, vibration, or malfunctions.
When it is not possible to resolve an abnormality even after verifying the corresponding checkpoint, obtain a “Reduction
Gear Investigation Request Sheet” from our Website, fill in the necessary information, and contact our Service Center.

[URL]:

http://precision.nabtesco.com/documents/request.html

The trouble started immediately after installation of the reduction gear

Checkpoint

Make sure the equipment’s drive section (the motor side or the reduction gear output surface side) is

not interfering with another component.

Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load).

Make sure the required number of bolts are tightened uniformly with the specified tightening torque.

Make sure the reduction gear, motor, or your company’s components are not installed at a slant.

Make sure the specified amount of Nabtesco-specified lubricant has been added.

Make sure there are no problems with the motor’s parameter settings.

Make sure there are no components resonating in unity.

Make sure the input gear is appropriately installed on the motor.

Make sure there is no damage to the surface of the input gear teeth.
Make sure the input gear specifications (precision, number of teeth, module, shift coefficient,

dimensions of each part) are correct.

Make sure the flange and other components are designed and manufactured with the correct tolerances.

Make sure the equipment has not been in operation longer than the calculated service life.

Make sure the surface temperature of the reduction gear is not higher than normal during operation.

Make sure the operation conditions have not been changed.

Make sure there are no loose or missing bolts.

Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load).

Make sure the equipment’s drive section is not interfering with another component.

Make sure an oil leak is not causing a drop in the amount of lubricant.

Make sure there are no external contaminants in the gear, such as moisture or metal powder.

Make sure no lubricant other than that specified is being used.

The trouble started during operation

Checkpoint

Checked

Checked

Troubleshooting checksheet

background image

54

Please supply us the following items when

ordering RV series  Reduction Gears.

Operating environment temperature             °C

APPLICATION WORKSHEET

1.

How used

2.

Model

3.

Conditions of load

Name of Machine:

Applied to:

RV-

time

Time

t

1

t

2

t

3

Constant

speed

operating

time

Holding  time

MAX. starting torque

T

1

T

2

T

3

N

2

N

1

N

3

O

Constant speed torque

Output torque

Output Speed

Deceleration

time

Acceleration

time

MAX. stopping torque

Output shaft mounting surface

W

1

W

2

(Typical Example)

4.

External load conditions

Working hours

Cycle/Day:

Day/Year:

Year

For starting

For constant

For stopping

Cycle time

(MAX)

speed

(MAX)

Load torque

T

1

T

2

T

3

(Nm)

Speed

N

1

N

2

N

3

(rpm)
Time

t

1

t

2

t

3

t

4

(s)

6.

Installation

7.

Input gear specification

8.

Driving portion (Servo motor)

9.

Other

Reduction speed ratio: i=

Standard size,
Input gear  Prepared by

TS Corporation

User

Other

Manufacturer

Capacity:

(kW)

Model

Rated torque:

(Nm)

(mm)

Speed:

(rpm)

Shape of the shaft

Upper motor

Horizontal  Vertical

Lower Motor

Illustration for installation

Required dimension of input gear (Illustration)

Operating environment

5.

Cycle time

t

4

background image

55

VIGOGREASE

®

Ordering Information

Application and features

Contact Information

This product is a lubricant specially made for Nabtesco precision reduction gears
and can achieve high efficiency and extended service life for our reduction gears.

Package

Caution

Select from among the following container sizes.

Asia and others  (Service Center, Tsu Plant, Nabtesco Corporation)
Phone: +81-59-237-4672  FAX: +81-59-237-4697

Europe & Africa (Nabtesco Precision Europe GmbH)
Phone: +49-211-173790  FAX: +49-211-364677
E-mail: info@nabtesco-precision.de

North & South Ameria (Nabtesco Motion Control, Inc.)
Phone: +1-248-553-3020  FAX: +1-248-553-3070
E-mail: info@nabtescomotioncontrol.com

China (Shanghai Nabtesco Motion-equipment Trading Co., Ltd.)
Phone: +86-21-33632200  FAX: +86-21-33632655
E-mail: info@nabtesco-motion.cn

Be sure to use this product only after fully and carefully reading the cautions, etc., on the container.

Package

2kg

16kg

170kg

Part number

VIGOG-RE0-2KG

VIGOG-RE0-16KG

VIGOG-RE0-170KG

Style of packing

Can (in cardboard box)

Pail

Drum

background image

56

M E M O

background image

Doors

Nabtesco technology

opens and closes

automatic doors in

buildings and platform

doors at train stations.

Robots

Precision reduction

gears precisely move

and stop industrial

robots.

Contributing to society with our
‘Moving it. Stopping it.’ technologies

Nabtesco technologies

are at work in many

areas of our

daily lives.

Nabtesco's

technologies

supporting

society

Nabtesco manufactures products which are used in everyday life. Our

high-accuracy components are essential for moving objects; they may

be rarely visible, but are the foundation of everyday objects that you see

moving and wonder how. Nabtesco’s technologies are found throughout

objects that move and stop people’s lives.

Construction

machinery

Running motors and

control valves start

and stop hydraulic

excavators.

Bullet trains

Brakes and doors

ensure safety and

comfort for the

world-famous

Shinkansen bullet trains.

Airplanes

The flight control

systems are crucial

for the flight safety of

aircraft.

Tankers

The engine remote

control systems for

vessels move and

stop large vessels.

Wind turbines

The drive units for wind

turbine generators

control the orientation of

the wind turbine and the

angle of the blades.

1. In the case where Nabtesco confirms that a defect of the Product was caused due to Nabtesco’s design or

manufacture within the Warranty Period of the Product, Nabtesco shall repair or replace such defective

Product at its cost.  The Warranty Period shall be from the delivery of the Product by Nabtesco or its distribu-

tor to you (“Customer”) until the end of one (1) year thereafter, or the end of two thousand (2,000) hours

running of the Product installed into Customer’s equipment, whichever comes earlier.

2. Unless otherwise expressly agreed between the parties in writing, the warranty obligations for the Product

shall be limited to the repair or replacement set forth herein.  OTHER THAN AS PROVIDED HEREIN,

THERE ARE NO WARRATIES ON THE PRODUCT, EXPRESS OR IMPLIED, INCLUDING WITHOUT

LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE.

3. The warranty obligation under the Section 1 above shall not apply if:

a) the defect was caused due to the use of the Product deviated from the Specifications or the working

conditions provided by Nabtesco;

b) the defect was caused due to exposure to foreign substances or contamination (dirt, sand etc.)
c) lubricant or spare part other than the ones recommended by Nabtesco was used in the Product;
d) the Product was used in an unusual environment (such as high temperature, high humidity, a lot of dust,

corrosive/volatile/inflammable gas,  pressurized/depressurized air, under water/liquid or others except for

those expressly stated in the Specifications);

e) the Product was disassembled, re-assembled, repaired or modified by anyone other than Nabtesco;
f ) the defect was caused due to the equipment into which the Product was installed;
g) the defect was caused due to an accident such as fire, earthquake, lightning, flood or others; or
h) the defect was due to any cause other than the design or manufacturing of the Product.

4. The warranty period for the repaired/replaced Product/part under the Section 1 above shall be the rest of the

initial Warranty Period of the defective Product subjected to such repair/replace.

Warranty

background image

TM

High Reliability  High Rigidity

R V   N   S E R I E S

High Precision Gear Reducers

High Prec

ision

Gear Reduc

ers

R

V N SERIES

● Nabtesco, VIGODRIVE, VIGOGREASE, RV are registered trademarks or trademarks of Nabtesco Corporation.
● Specifications are subject to change without notice.
● The PDF data of this catalog can be downloaded from the following website.
http://precision.nabtesco.com/
If any addition or modification is made to the published information, the PDF data may be updated before the printed catalog.
Due to this, please note that some contents of the PDF data may be changed or revised from those in this catalog.
● Unauthorized reprinting, reproduction, copying, or translation of this catalog in whole or in part is strictly prohibited.

CAT.140829L

Rev. 008

Europe and Africa

North and South America

China

Asia and others

Nabtesco Precision Europe GmbH

Tiefenbroicher Weg 15, 40472 Düesseldorf, Germany
TEL: +49-211-173790  FAX: +49-211-364677
E-MAIL: info@nabtesco.de   www.nabtesco.de

Nabtesco Motion Control Inc. in U.S.A (North America & South America)

23976 Freeway Park Drive, Farmington Hills, MI 48335, USA
TEL: +1-248-553-3020  FAX: +1-248-553-3070
E-MAIL: engineer@nabtescomotioncontrol.com   www.nabtescomotioncontrol.com

Shanghai Nabtesco Motion-equipment Co., Ltd.

Room 1706, Hong Jia Tower, No. 388 Fu Shan Road, Pudong New Area, Shanghai 200122, China
TEL: +86-21-3363-2200  FAX: +86-21-3363-2655
E-MAIL: info@nabtesco-motion.cn   www.nabtesco-motion.cn

Nabtesco Corporation

Osaka Sales Office

21st Fl, Dojima Avanza, 1-6-20 Dojima, Kita-ku, Osaka 530-0003, Japan
TEL: +81-6-6341-7180  FAX: +81-6-6341-7182

Tsu Plant (Engineering Department)

594 Ichimachida, Katada-cho, Tsu, Mie 514-8533, Japan
TEL: +81-59-237-4600  FAX: +81-59-237-4610
E-MAIL: P_Information@nabtesco.com   www.nabtesco.com