Products and Data, Überblick



Beschreibung

As your partner, we would like to support you in your capacity as planner, processor and architect in your day-to-day operations. This book describes the values and properties of our brand families and their products. It also includes recommendations on how to use the products correctly. You will be provided with insights into the production methods and into physical correlations. References are made for this purpose to the special features of glass as a building material. We don't stand still; our products are subject to a continuous improvement process, and innovative glass types are being added. The contents of this book are therefore revised on a periodic basis. It's amazing how versatile glass is as a building material. EUROGLAS as the producer of basic glass is the first link in the chain. Optimum applications planning requires technical expertise.


background image

Table of Contents I

1

Products and Data

4th edition

background image

4th edition

Issued by: EUROGLAS
© Copyright 2016 by EUROGLAS, Haldensleben
Graphic editing: TEAM ABSATZFÖRDERUNG GmbH, Filderstadt

Applicable to print and electronic media, in whole and in part. Not to be published without express
consent (also applies to foreign languages).

The technical data listed conforms to the current values at the time of going to print and can alter
without prior notice. Unless otherwise indicated, these data are based on calculations founded on
measurements conducted on standard structures. The light-related/energy-related data and the U
values are based on EN standards and EN 673 respectively.  Warranted quality cannot be derived
from these data for individual finished products. The statutory provisions must be observed for all
types of use.

No further guarantee for technical values shall be accepted, in particular if tests are performed in
other installation situations.

Legal claims cannot be derived from the content of this book.

background image

Preface

As your partner, we would like to support you in your capacity as planner, processor and architect
in your day-to-day operations. This book describes the values and properties of our brand families
and their products. It also includes recommendations on how to use the products correctly. You will
be provided with insights into the production methods and into physical correlations. References are
made for this purpose to the special features of glass as a building material.

We don't stand still; our products are subject to a continuous improvement process, and innovative
glass types are being added. The contents of this book are therefore revised on a periodic basis.

It's amazing how versatile glass is as a building material. EUROGLAS as the producer of basic glass
is the first link in the chain. Optimum applications planning requires technical expertise.

EUROGLAS Group

background image
background image

Table of Contents

1.  The EUROGLAS Group

2.  Glass as a Building Material

3.  Glass Characteristics and Basic Physical Concepts

4.  Products

5.  Logistics

6.  Application and Handling

7.  Standards, Technical Regulations

1.

5.

3.

7.

2.

6.

4.

1.

5.

3.

7.

2.

6.

4.

background image

6

I Table of Contents

1. The EUROGLAS Group

13

2. Glass as a Building Material

15

2.1.  Historical development

15

2.2. Manufacture of float glass

18

2.3. Basic glass

19

2.3.1.  Float glass

19

2.3.2.  Window glass

20

2.3.3.  Ornamental and cast glass

20

2.3.4.  Wired ornamental glass, wired glass and polished wired glass

21

2.3.5.  Borosilicate glass

21

2.3.6.  Glass-ceramics

21

2.3.7.  Radiation shielding glass

21

2.3.8.  Polished plate glass

22

2.3.8.  Lead crystal

22

2.3.10. Quartz glass

22

2.3.11. Available thicknesses of different glass

22

2.4. General comments on building with glass

22

2.4.1.  Safety glass must be planned and specified

23

2.4.2.  Even the thickest glass can break

23

2.4.3.  Glass should be replaceable with reasonable effort and expense

23

3. Glass Characteristics and Basic Physical Concepts

25


3.1.  Glass and solar radiation

25

3.2. The greenhouse effect

25

3.3. Operation in terms of radiation physics

26

3.4. Glass characteristics

28

3.4.1  Light transmission/light transmittance (LT)

28

3.4.2.  Light absorption/light absorptance (LA)

28

3.4.3.  Light reflection/light reflectance (LR)

28

3.4.4.  Radiation transmission/radiation transmittance (RT)

28

3.4.5.  Radiation absorption/radiation absorptance (RA)

28

3.4.6.  Radiation reflection/radiation reflectance (RR)

28

3.4.7.  Total energy transmission/total energy transmittance (g value)

29

3.4.8.  Shading coefficient

29

3.4.9.  Selectivity characteristic

30

3.4.10. General colour rendering index (R

a

)

30

3.4.11. UV transmission

30

3.5  The U value

30

background image

Table of Contents I

7

4. Products

33


4.1. EUROFLOAT – Uncoated basic glass

33

4.1.1.  Manufacture of float glass

33

4.1.2.  Product range

37

4.1.3.  Physical and chemical properties of flat glass

40

4.1.3.1.  Definition and composition

40

4.1.3.2.  Mechanical properties

42

4.1.3.3.  Thermal properties

44

4.1.3.4.  Chemical properties

46

4.1.3.5.  Radiation-physical properties

47

4.1.3.6.  Further properties

50

4.1.3.7.  Summary of the most important technical

characteristics of float glass

51

4.1.4.  Available range and packing

52


4.2. SILVERSTAR – Coated glass

55

4.2.1.  SILVERSTAR thermal insulation coatings

60

4.2.1.1  Use as thermal insulation glass

61

4.2.1.2.  Combination possibilities

62

4.2.1.3.  Available range

62

4.2.2.  SILVERSTAR solar control layers

63

4.2.2.1.  Function of solar control insulation glass

64

4.2.2.2.  Application of solar control insulation glass

67

4.2.2.3.  Available range

69

4.2.3.  SILVERSTAR COMBI coatings

70

4.2.3.1.  Application of COMBI coating

71

4.2.4.  Combination possibilities

74

4.2.5.  Insulation glazing

75

4.2.5.1.  Principles, energy gain, comfort in the home

75

4.2.5.2.  Insulating glass edge seal system

80

4.2.5.3.  Thermal insulation

86

4.2.6.  Balustrade panels

92

4.2.7.  Special coatings

96


background image

8

I Table of Contents

4.3. Laminated safety glass

99

4.3.1.  EUROLAMEX LSG laminated safety glass

99

4.3.2.  Protection and safety with glass

104

4.3.2.1.  Passive and active safety

104

4.3.2.2.  Glass with safety properties

106

4.3.2.3.  Passive safety in practice

107

4.3.2.3.1. Balustrade glazing

107

4.3.2.3.2. Sloping, roof and overhead glazing

108

4.3.2.3.3. Glass floors

110

4.3.2.3.4. Glazing in sports facilities

111

4.3.2.3.5. Structural use of glass

111

4.3.2.3.6. Passive safety – application recommendations

112

4.3.2.4.  Active safety in practice

114

4.3.2.5.  Safety properties of glass

115

4.3.3.  EUROLAMEX PHON – Sound-insulating glass

116

4.3.4.  Packing

118

4.3.5.  Sound control

121

4.3.5.1.  Noise sources and perception

123

4.3.5.2.  Measurement curves and their meaning

124

4.3.5.2.1. Test procedure

124

4.3.5.2.2. Sound reduction curve and weighted sound reduction index

125

4.3.5.2.3. Spectrum adjustment values C and C

tr

125

4.3.5.3.  Applicable standards and regulations

125

4.3.5.3.1. The Federal Noise Control Ordinance

126

4.3.5.3.2. DIN 4109

127

4.3.5.4.  Definitions pertaining to sound control

127

4.3.5.5.  Function and structure of sound reduction insulating glass

130

4.3.5.6.  Features of sound reduction insulating glass

131

4.3.5.6.1. Laminated safety glass with sound-insulating film (LSG P)

131

4.3.5.7.  Insulating glass – window – facade interrelations

133

4.3.5.8.  Sound control combined with other functions

134

4.3.5.8.1. Sound control and thermal insulation

134

4.3.5.8.2. Sound control and safety

134

4.3.5.8.3. Sound control and solar control

135

4.3.5.8.4. Sound control and muntins

135

4.3.5.9.  Overview of sound insulation glass

135

background image

Table of Contents I

9

4.4. LUXAR anti-reflective glass (HY-TECH-GLASS)

137

4.4.1.  LUXAR anti-reflective glass as single glazing

139

4.4.2.  LUXAR anti-reflective glass as insulating glass

139

4.4.3.  LUXAR CLASSIC anti-reflective glass

140


4.5. Fire protection glass

143

4.5.1.  FIRESWISS FOAM fire protection glass – classification EI

144

4.5.2.  FIRESWISS COOL fire protection glass – classification EW

148

4.6. Solar and toughened safety glass

151

4.6.1.  Areas of application for EUROGLAS ESG Flat

151

4.6.2.  Manufacture and processing

152

5. Logistics

157

5.1. Transport modes

157

5.2. Packaging

158

background image

10

I Table of Contents

6. Application and Handling

161

6.1. Glass cleaning

161


6.2. Glass fracture

161

6.2.1.  Glass fracture due to thermal shock

162

6.2.2.  Spontaneous failure of TSG

163

6.2.3.  Scratches on and fracture of insulating glass

163

6.2.4.  Glass fracture on sliding doors and windows

164

6.2.5.  Assessment of glass fractures

164

6.2.5.1. Glass fractures due to direct impact, shock, thrown objects or bullets

165

6.2.5.2.  Glass fractures due to bending stress, pressure, suction,

tension and load

165

6.2.5.3. Glass fractures due to local heating or formation of deep shadows

166


6.3. Optical phenomena

167

6.3.1.  Natural colour

167

6.3.2.  Colour differences of coatings

167

6.3.3.  Visible area of the insulating glass edge seal

167

6.3.4.  Insulating glass with internal muntins

168

6.3.5.  Interference phenomena (Brewster fringes, Newton rings)

168

6.3.6.  Insulating glass effect (double-pane effect)

169

6.3.7.  Anisotropies (irisation)

169

6.3.8.  Formation of condensation

170

6.3.8.1. Condensation on external surfaces of panes (formation of dew water)

170

6.3.8.2. Condensation on the room side

170

6.3.8.3. Dew point determination

170

6.3.9. Preventing disruptive reflections

172

background image

Table of Contents I

11

6.4. Product-specific application directions

173

6.4.1.  Handling/processing guidelines for thermal insulation glass

of the SILVERSTAR product family 177

6.4.1.1. Transport and packaging

173

6.4.1.2. Handling

176

6.4.1.3. Cutting of glass to size

176

6.4.1.4. Removal of edge coating

177

6.4.1.5. Storage

178

6.4.1.6. Insulating glass manufacture

179

6.4.1.7. Quality inspection and testing

181

6.4.1.8. Recommendations

182

6.4.1.9. Standards for glass in civil engineering and building construction

184

6.4.2.  SILVERSTAR SUNSTOP T solar control glass

186

6.4.2.1. General

186

6.4.2.2. Tempering process requirements

186

6.4.2.3. Tempering furnace

187

6.4.3.  Technical directions for using thermal insulation and solar control glass

188

6.4.4.  Milky coatings on insulating glass

190

6.4.5.  Plant growth behind thermal insulation glazing

190

6.4.6.  FIRESWISS FOAM fire protection glass

192

6.4.7.  One-way glass

192

6.4.8.  Laminated safety glass

192

6.4.8.1. Edge zone on LSG

192

6.4.8.2. Laminated safety glass with UV protection

193

6.4.9.  Assessment of view-restricting facades

193

7. Standards, Technical Regulations

195


7.1. ISO international standards

195

7.2. European standards

196

7.3. German / European standards (DIN EN)

196

7.4. German standards

198

background image

12

I Die EUROGLAS Gruppe

1.

Up to 800 tons of float glass come off the line every day at the EUROGLAS plant in Osterweddingen.

background image

The EUROGLAS Group I

13

1.

1. The EUROGLAS Group

Partner  in  glass  –  this  has  been  the  role  of  EUROGLAS  since  its  founding  at  the  start  of  the
1990s. EUROGLAS was established from the alliance of five independent small to medium-sized
glass-processing companies. All these companies were united by one idea – the independent sup-
ply of glass.

EUROGLAS is a subsidiary of the Glas Trösch Group in Switzerland. In 1995 the Group's first float
glass facility came into operation at Hombourg in Alsace/France.  This was followed three years
later by the plant in Haldensleben and in 2006 by the plant in Osterweddingen, both in Germany.
The most recent float glass plant was built in 2011 in Ujazd, Poland. All four melting baths produce
over 3000 tons of glass per day, ensuring the independent supply of basic glass.

As well as float glass and extra-white glass, EUROGLAS manufactures laminated safety glass
(LSG), coated glass for thermal insulation and solar control applications, and glass for solar and
interior applications.

“Think global, act local”: EUROGLAS products are sold throughout Europe – but investing in the fu-
ture also involves taking on responsibility at the regional level. EUROGLAS is committed in its four
plants to the health and further education of its workforce and provides on-the-job training. The
latest techniques are used to improve conservation of resources and environmental protection: an
intelligent furnace design, exhaust air cleaning und heat recovery reduce energy consumption and
pollutant emissions. In this way, the glass is already contributing during the production process to
a sustainable and responsible-minded value chain.

Satisfied customers, a committed workforce, constant innovation, continuous growth and envi-
ronmentally aware production are the cornerstones of the traditional company philosophy.

View into the melting bath: firing above the batch.

background image

14

I Glass as a Building Material

2.

background image

Glass as a Building Material

I

15

2.

2. Glass as a Building Material

2.1. Historical development

Glass  is  one  of  the  oldest  man-made  materials.  However,  the  mystery  as  to  the  ori-
gins  of  glass  manufacture  is  unresolved  to  this  day.  The  oldest  glass  finds,  in  the  form  of
glazes of ceramics, date back to the 7th millennium BC. We can talk of the beginnings of actual
glass  production  from  around  3500  BC  onwards,  in  the  form  of  glass  beads  and  later  also  as
rings and small figures manufactured in moulds. The sand core technique was developed around
1500 BC. Here a ceramic core attached to a rod and serving as a negative mould was dipped into
the melt and turned about its own axis until the viscous glass mass stuck to it.  The mass was
then rolled out on a plate until the desired shape was obtained. The workpiece was then cooled,
the  auxiliary  core  was  removed,  and  the  rough  glass  elements  were  finished  by  polishing  and

grinding. This technique produced small vases,
drinking  vessels  and  bowls  which  at  the  time
were  still  opaque  but  coloured,  with  the  col-
ours being obtained by adding copper and co-
balt compounds to the melt. Around 1000 BC,
the art of the glassmaker had spread in the Nile
valley  from  Alexandria  to  Luxor,  between  the
Euphrates and the Tigris, in Iraq and in Syria,
to  Cyprus  and  Rhodes,  and  as  a  result  a  kind
of prehistoric glass industry was established.

Figure: Lotus goblet with the name of Thutmo-
sis III. The oldest reliably dated glass vessel.
New Kingdom, 18th Dynasty, ca. 1450 BC
State Museum of Egyptian Art, Munich

Glassmaker's blowpipe
The invention of the glassmaker's blowpipe by Syrian craftsmen around 200 BC took glass man-
ufacture  up  to  a  whole  new  level.  This  simple  instrument,  an  iron  pipe  around  100  –  150  cm
long, made possible the manufacture of a wide variety of thin-walled and transparent vessels. The
glassblower takes a gob of liquid glass from the melt and blows it into a ball. Further development
of this technique into the cylinder stretching process already made it possible to make flat glass
slabs up to a size of around 90 x 200 cm by the 1st century AD. In spite of huge technical advances,
the glassmaker's blowpipe is still used today, in virtually unchanged form, to manufacture special
glass, for example authentic antique glass.

Lotus goblet, Thutmosis III/© State Museum

of Egyptian Art, Photographer: Marianne Franke

background image

16

I Glass as a Building Material

2.

2.

Spread throughout the Roman Empire
With  the  occupation  of  Syria  by  the  Romans  (64  BC),  the  art  of  glassmaking  was  adopt-
ed  by  them,  and  with  its  spread  throughout  the  entire  Roman  Empire  a  first  heyday  of  glass
culture  developed,  with  the  founding  of  glassworks  in  Italy.  Just  after  the  birth  of  Christ
the first window panes were already being installed in town houses in Rome, and around 50 years
later the first Roman glassworks north of the Alps were established in Cologne and Trier.

Around 540 AD, a first great work of church architecture, the Hagia Sophia in Constantinople, was
provided with glass windows. In the Gothic period (ca. 1150 – 1500), glass in church architecture
was held in extraordinarily high regard, surpassing even the status of gold. 5000 m

2

of stained

glass windows were installed in Chartres Cathedral (construction period 1194 – 1260).

Venetian glassmaking
Between the 9th and 13th centuries, glass was made primarily in monastery glassworks. From
then on, glassmaking moved away from the monasteries, and the first forest glassworks were
established north of the Alps, initially changing location nomadically (depending on the availability
of wood) but settling in permanent locations from the 18th century onwards. The glass products
from these works were, due to the high iron oxide content of the sand and the associated green
colouration, not of top quality. Examples in Switzerland of forest glassworks of this type are the
“Verrerie près de Roche” (1776) and the “Glasi Hergiswil”. Absolute top quality when it came to
glass products originated in Venice between the 15th and 17th centuries. The success of Venetian
glass was founded on its exceptional purity and colourlessness. The Venetian glassmakers, who
had been organised in a glassmakers' guild since 1280, succeeded in discovering a decolouring
agent from the ashes of a beach plant. Under the threat of draconian punishments, they were long
able to keep this and other secrets of the high art of glassmaking to themselves, and thus found
not only fame but also considerable fortune.

St. Vitus Cathedral in Prague, Czech Republic

A gob of viscous glass is removed with the glassmaker's
blowpipe

background image

Glass as a Building Material I

17

2.

2.

First cast glass process
In 1599 the first glazed greenhouse was built in Leiden/Holland. Glass was by now being increas-
ingly used not only in churches and monasteries, but also in townhouses, palaces and castles,
causing greater demand.  This steadily increasing demand and the monopoly of Venice forced the
glassworks to come up with new production methods. The cast glass process was developed in
France around 1688. The viscous glass mass was poured out onto a smooth preheated copper
plate and rolled out with a water-cooled metal roller into a sheet. The new process was much
more productive than previous processes and produced significantly flatter sheets, which were
then ground and polished. The so-called “grandes glaces” measured 120 x 200 cm, were of high
quality and came in a variety of thicknesses.

Greenhouses in Britain
The start of the 19th century witnessed, particularly in Britain, a new type of building, the so-called
“hothouse”, also known as an orangery or palm house. The building shell consisted solely of iron and
glass, with the glass for the first time having structural functions as the bracing element. A high point
of this glass architecture was the construction of the “Crystal Palace” for the Great Exhibition of 1851
in London. The building complex designed by Joseph Paxton, of huge dimensions (length 600 m, width
133 m, height 36 m) even by today's standards, consisted of an iron structure filled out with 300,000
individual glass panes. The clear and minimal iron structures and the open space became the
model for modern glass architecture.

In the 19th century, advances were made in all areas of glass manufacture. Thus, for example, the cast-
ing and rolling process was continuously developed further to deliver ever larger pane dimensions
(by 1958 dimensions of 2.50 x 20 m were possible). Cylinder glass blowing was further improved by
the use of compressed air. Glass cylinder sizes of 12 m in height and 80 cm in diameter became
possible, and with them theoretical pane sizes of approximately 2.50 x 11.50 m. Cast and raw glass
is in principle still manufactured today using the rolling process.

Crystal Palace, London

background image

2.

2.

18

I Glass as a Building Material

2.

From drawn glass to float glass
After  1900  the  Belgian  Emile  Fourcault  succeeded  in  developing  a  process  for  manufacturing
glass in which the glass is drawn directly from the melt. The drawn glass process was patent-
ed  in  1902,  but  could  only  be  used  on  an  industrial  scale  a  good  ten  years  later.  This  process
made it possible to manufacture plain glass panes which are clearly transparent without need-
ing  to  be  ground  and  polished.  In  addition  to  the  Fourcault  process,  a  further  process,  that  of
Libbey-Owens  developed  by  the  American  Irving  Colburn,  was  of  significance:  here  the  glass
was  not  drawn  into  the  vertical,  as  in  the  Fourcault  process,  but  via  a  bending  roller  into  the
horizontal.  From  1928  onwards,  the  Pittsburgh  Plate  Glass  Company  produced  glass  using
a process which combined the advantages of the two above processes. This produced in particular
a further increase in production speed.

The decisive step towards the economical production of high-quality glass slabs with absolutely
plane-parallel surfaces was taken in 1959 by the Englishman Alastair Pilkington with the develop-
ment of the float glass process. Float glass is the most widely used type of glass today.

2.2. Manufacture of float glass

Float glass is produced in a long and continuous stream, in the course of which an endless ribbon
of glass that never tears is created and, depending on the glass thickness and the capacity of the
installation, grows up to 30 kilometres every day. Only absolute precision over the entire produc-
tion distance of several hundred metres can guarantee the high quality of EUROFLOAT glass. For
information on its manufacture please refer to Chapter 4.1.1.

Osterweddingen float glass plant

background image

Glass as a Building Material I

19

2.

2.

2.3. Basic glass

2.3.1. Float glass
Float glass is the most widely used type of glass today. The float process enables the economical
manufacture of clearly transparent glass with flat surfaces in thicknesses from 2 to 19 mm. Float
glass is available as standard float glass, with a slight green colouration, and as extra-white glass
with no natural colour. For further information please refer to Chapter 4.

Coloured float glass
Coloured float glass can be produced by adding
metal oxides, with the entire glass mass being
coloured. The upshot is that the intensity of the
respective colour is linked to the thickness of
the glass. Theoretically, a wide range of shades
would be possible, but for practical reasons the
available  palette  is  confined  to  a  few  shades
(green,  grey,  bronze,  blue).  When  exposed  to

sunlight, coloured glass heats up very strongly due to the high radiation absorption, increasing
the risk of thermal breakage. Coloured float glass must therefore often be tempered in practice.
The sheet size is 3210 x 6000 mm.

Colouring oxides and their effect according to Dr Fahrenkrog (extract)

Colouring oxide

Effect

Iron oxide

Green

Nickel oxide

Grey

Cobalt oxide

Blue

Al Falassi, Dubai, UAE

background image

20

I Glass as a Building Material

2.

2.

2.3.2. Window glass
The term window glass today denotes glass that has been produced in the drawing process. Win-
dow  glass  and  float  glass  have  the  same  chemical  composition  and  exhibit  the  same  physical
properties. The significance of window glass is today confined in practical terms to the renovation
market for historically important buildings. The drawing marks (stripes) that give the glass sur-
face the feel of being “alive” are very much in demand in the reconstruction or replacement of
historical windows.

2.3.3. Ornamental and cast glass
Ornamental glass is glass with a more or less structured surface on one or both sides. During
manufacture, the glass mass passes through one or more pairs of rollers which impart the re-
quired  embossed  texture.  The  glass  does  lose  its  clear  transparency  in  this  process,  but  as  a
result is perfectly suitable for use as privacy screening with high translucence. The thermal and
structural load capacity of ornamental glass is generally lower than that of float glass.

Some  structured  glass  can  be  tempered,  laminated  into  LSG  or  combined  to  make  insulating
glass. The finish is dependent on the type and direction of the structure and on production tech-
nology factors.

Selection from the Glas Trösch ornamental glass collection.  For all types of ornamental glass,
please visit www.glastroesch.ch

Batch filling

Melting furnace

Cooling zone

Cutting
to size

Rollers (glass structure)

Spec. 32 white

Master Carré white

Raw plate glass Str. 200 white

background image

Glass as a Building Material I

21

2.

2.

2.3.4. Wired ornamental glass, wired glass and polished wired glass
Ornamental glass can be provided with a wire mesh insert, which is inserted during the produc-
tion process into the still liquid glass. In the event of the glass being mechanically destroyed, the
wire mesh holds the fragments together, providing a degree of protection against falling shards.

Wired ornamental glass has one

structured surface

Wired glass has two smooth surfaces
Polished wired glass (previously wired

plate glass) has two polished surfaces

Warning
Wired  glass  too  is  much  more  susceptible  to
breakage than float glass and is by no means
a safety glass.

2.3.5. Borosilicate glass
Contains an addition of 7 – 15 % boron oxide. The coefficient of thermal expansion is very much
lower when compared with float, window and ornamental glass. Borosilicate glass therefore has
a significantly higher resistance to changing temperatures, and also a high resistance to alkalis
and acids. It is used when high thermal stability is required.

2.3.6. Glass-ceramics
Glass-ceramics are not glass in the strict sense of the word, in that they have a partial or com-
plete microcrystalline structure. They can nevertheless be absolutely transparent. They have an
extraordinarily high resistance to changing temperatures. They are used in building applications
primarily as ceramic hobs.

2.3.7. Radiation shielding glass
Consists of a high percentage of lead oxide that absorbs X-rays. It is therefore also often called
lead glass. Radiation shielding glass has a high density (depending on the lead content up to 5 g/
cm

3

), and so is up to twice as heavy as float glass. A characteristic feature of radiation shielding

glass  is  its  slight  yellow  colouration.  Its  effectiveness  against  X-rays  is  specified  with  the  so-
called lead equivalent. It is used particularly in hospitals and in research and development facil-
ities. Generally wherever clear transparency is desired, but optimum radiation shielding must be
ensured.

Wired glass

background image

22

I Glass as a Building Material

2.

2.

2.3.8. Polished plate glass
Term for cast and rolled glass ground plane-parallel on both sides. With clear transparency and
flawless appearance, colourless or coloured (superseded by float glass).

2.3.9. Lead crystal
Term for mostly plumbiferous, ground hollow glass ware (not flat glass!).

2.3.10. Quartz glass
Quartz glass consists of pure silicon oxide. Its name is a little misleading in that it exhibits not a
crystalline structure like quartz, but an amorphous structure as is customary with glass. Quartz
glass has a great capacity to transmit ultraviolet radiation, a low coefficient of thermal expansion
and thus a high resistance to changing temperatures. Applications: optics, bulb production, semi-
conductor production, fibre-optic cables and insulation materials in electronic components.

2.3.11. Available thicknesses of different glass types

EUROFLOAT

3 mm

4 mm

5 mm

6 mm

8 mm

10 mm

12 mm

on request

EUROWHITE

3 mm

4 mm

5 mm

6 mm

8 mm

10 mm

12 mm

on request

2.4. General comments on building with glass

Developments  in  glass  technology  over  the  past  few  decades  have  resulted,  thanks  to  the
wide  variety  of  processing  and  finishing  processes,  in  improved  mechanical  strength  and  in
significantly  improved  physical  properties.  The  continuous  further  development  of  production
facilities creates ever larger available dimensions, which is why the option of building with glass
has in recent years become increasingly popular with architects, planners and building sponsors.
At the same time, building experts are proving to be increasingly knowledgeable about glass and
its potential uses. However, fundamental rules are frequently disregarded amidst all the euphoria.

background image

Glass as a Building Material I

23

2.

2.

2.4.1. Safety glass must be planned and specified
The glass industry offers a wide range of glass types with safety properties. However, standard
float glass is used for obvious economic reasons if no safety requirements are defined. Unfortu-
nately, this often leads to safety-related misunderstandings with dangerous consequences. Seri-
ous planning therefore requires an agreement on utilisation between architect and building spon-
sor. As well as defining the type of utilisation of the different building parts, this agreement must
also set out the safety requirements (active and/or passive) with regard to the glazing. The agree-
ment on utilisation forms the basis for defining the required glass quality with the glass specialist.

2.4.2. Even the thickest glass can break
Glass is indeed a high-strength, but unfortunately brittle-fracturing material. The material is al-
most completely elastic in its behaviour and has no plasticising possibilities that would enable it
to displace peak stresses, as is for example possible with metals. This property makes glass to a
certain extent “unpredictable”. It must therefore always be assumed that glass can break due to
an unforeseeable external influence (e.g. stone impact or exposure to heat etc.).

For this reason, the warranties furnished by the glass supplier as a rule exclude the risk of break-
age/fracture. It is therefore customary to take out special glass breakage insurance to cover glass
breakage damage.

To prevent people from being endangered or even injured in the event of glass breakage, it is es-
sential in any event to incorporate the consideration as to “what happens in the event of or after a
glass breakage?” in the planning and to take the necessary planning precautions. This safety risk
can often be reduced by the use of special laminated safety glass.

2.4.3. Glass should be replaceable with reasonable effort and expense
The improved physical, structural, design and safety properties, and in particular single and insu-
lating glass with hitherto inconceivable dimensions, afford the planner immense design and im-
plementation latitude, which is often pushed to the limits. But since glass after being fitted,

as

explained in Section 2.4.2., can break due to unforeseeable external influences or can lose its
aesthetic perfection (e.g. as the result of scratches), it is essential to address the question of the
replaceability of glazing. Prudent planners and designers ensure that individual panes of glass
can be replaced at any time, even after completion of construction, at reasonable effort and ex-
pense. In this respect, emphasis should be placed on simple assembly and disassembly and on
sensible  accessibility  (approach  route,  accessibility  with  a  crane  jib,  etc.)  for  the  replacement
glazing. This detail too is part of sustained building and planning.

background image

24

I Glass Characteristics and Basic Physical Concepts

3.

Financial Center, Abu Dhabi, UAE

background image

Glass Characteristics and Basic Physical Concepts I

25

3.

3.

3.  Glass Characteristics and Basic Physical

Concepts

3.1. Glass and solar radiation

Glass is characterised by its great capacity to transmit radiation in the solar spectrum range. The
specific behaviour with regard to solar radiation is therefore in practice an important distinguishing
factor of different types of glass, expressed with the so-called glass characteristics. These charac-
teristics are radiation-physical comparative values.

Spectral subdivision of solar radiation

Solar radiation can, depending on the angle of incidence, geographical location, time of day and at-
mospheric conditions, range up to 800 W/m

2

or more.

3.2. The greenhouse effect

Because float glass has a very high capacity to transmit (transmission) solar radiation, the majority of
the solar energy impinging on glazing passes by direct transmission into the room interior.

Type of radiation

Wavelength range

Percentage (energy)

Ultraviolet radiation

320 – 380 nm

approx. 4 %

Visible radiation

380 – 780 nm

approx. 45 %

Infrared radiation

780 – 3000 nm

approx. 51 %

Totalenergy

UV

visible

Infrared

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wavelength in nm

Light

UV

visible

Infrared

Wavelength in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrial

radiation
λ = 200

_ 10000 nm

Atmosphere

Global radiation

Float glass 6 mm

T: 300 K

Absorption

Secondary radiation

λ = 7000 nm

Rad

iatio

n tra

nsm

itted

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

background image

26

I Glass Characteristics and Basic Physical Concepts

3.

In the room, the sun's rays are absorbed by walls, floors and bodies. These are heated up and now in
turn transmit the received energy in the form of long-wave infrared radiation.
Glass is barely able to transmit this type of radiation. The interior of a room therefore heats up be-
cause new energy is constantly coming in from the outside and only a small amount of this energy
passes from the inside to the outside.
Primarily responsible for the greenhouse effect is the different capacity of float glass to transmit (trans-
mission) short-wave and long-wave radiation.

3.3. Operation in terms of radiation physics

The most important terms in connection with solar control glass (Physical values)

Transmission, Reflection and Absorption

Above all when it comes to solar control glass,
three terms – and thus also three numerical val-
ues – are of crucial importance.

Reflection – Throwing back of the

sun's rays; mirror effect.

Transmission – Passing through of the

sun's rays.

Absorption – Taking in of the sun's rays;

dark surface.

None of these three properties exist in their pure form in the building material glass. Every piece
of glass allows a certain proportion of rays to pass through (transmission and stops some of these
rays by absorption and reflection. The sum total of reflection, transmission and absorption is always
100%. A distinction is made between light (the visible range of the spectrum 380 – 780 nm) and the
total solar spectrum 320 – 3000 nm. The physical values are also defined accordingly.

Totalenergy

UV

visible

Infrared

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wavelength in nm

Light

UV

visible

Infrared

Wavelength in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrial

radiation
λ = 200

_ 10000 nm

Atmosphere

Global radiation

Float glass 6 mm

T: 300 K

Absorption

Secondary radiation

λ = 7000 nm

Rad

iatio

n tra

nsm

itted

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Totalenergy

UV

visible

Infrared

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wavelength in nm

Light

UV

visible

Infrared

Wavelength in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrial

radiation
λ = 200

_ 10000 nm

Atmosphere

Global radiation

Float glass 6 mm

T: 300 K

Absorption

Secondary radiation

λ = 7000 nm

Rad

iatio

n tra

nsm

itted

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Reflection

Transmission

Absorption

background image

Glass Characteristics and Basic Physical Concepts I

27

3.

3.

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Transmission

Radiation transmission

Light transmission

Reflection

Radiation reflection

Light reflection

Absorption

Radiation absorption

Light absorption

100 %

Reflection

Radiation and
convection

Energy
(total range of spectrum)

Light
(visible range of spectrum)

Radiation and
convection

Transmission

background image

28

I Glass Characteristics and Basic Physical Concepts

3.

3.4. Glass characteristics

Glass characteristics constitute important performance and distinguishing features of glazing. They
can be ascertained using measurement methods, but in current practice generally by the usie of cer-
tified calculation methods for both single glass and complex-structured multi-pane insulating glass.

Light and glass

3.4.1. Light transmission/light transmittance (LT)
The light transmittance of glazing denotes the percentage of solar radiation in the visible light range
(380 – 780 nm) which is transmitted from the outside to the inside.

3.4.2. Light absorption/light absorptance (LA)
The light absorptance denotes the proportion of solar radiation in the visible range (380 – 780 nm)
which is absorbed by the glazing. Light absorption is a less common characteristic quantity.

3.4.3. Light reflection/light reflectance (LR)
The light reflectance denotes that percentage of solar radiation in the visible light range (380 – 780 nm)
which is reflected outwards.

Total energy and glass

3.4.4. Radiation transmission/radiation transmittance (RT)
The radiation transmittance, also known as energy transmittance, denotes the proportion of radia-
tion in the total solar spectrum that is allowed to pass through by the glazing.

3.4.5. Radiation absorption/radiation absorptance (RA)
The radiation absorptance, or energy absorptance, denotes the proportion of radiation in the total
solar spectrium range that is absorbed by the glazing.

3.4.6. Radiation reflection/radiation reflectance (RR)
The radiation reflectance, or energy reflectance, of glazing denotes the proportion of radiation in the
total solar spectrum that is reflected directly outwards by the glazing.

background image

Glass Characteristics and Basic Physical Concepts I

29

3.

3.

Secondary heat output
The  amount  of  absorbed  radiation  is  dissipat-
ed again by the glazing in the form of radiation
(long-wave  infrared).  This  process  is  called
secondary heat output. It is divided into two as
a rule unequal parts (secondary heat output to
the  outside  and  secondary  heat  output  to  the
inside).

3.4.7. Total energy transmission/
total energy transmittance (g value)
The total energy transmittance denotes the sum
total of radiation transmission RT and secondary
heat output Qi to the inside.
ST + Qi = g value

The  total  energy  transmittance  is,  aside  from
the  U  value,  the  most  important  characteristic
quantity for glazing. It indicates how much of the
outer-impinging solar energy ultimately passes
into the room interior. For optimum passive solar
energy utilisation, the g value should be as high
as possible, and for optimum solar control effect
as low as possible.

3.4.8. Shading coefficient
The shading coefficient is a characteristic quantity derived from the g value, with two different deri-
vations being customary

Shading coefficient = g value : 0.80 (customary in Germany)
Shading coefficient = g value : 0.87 (customary in the UK and the USA)

The purpose of the shading coefficient is to compare the shading effect of glazing with the shading
effect of conventional uncoated double insulation glazing (g value = 0.80) or of single glazing with
6 mm thick float glass (g value = 0.87). Relevant directives and guidelines for calculating cooling
loads frequently require not the g value, but the shading coefficient. To avoid misunderstandings, it is
advisable in each case when specifying shading coefficients to define the basis for calculation exactly!

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Q

i

RT

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Secondary

heat output to

the inside

Q

i

Secondary
heat output to
the outside
Q

o

background image

30

I Glass Characteristics and Basic Physical Concepts

3.

3.4.9. Selectivity characteristic
The selectivity characteristic denotes the ratio between  light transmittance and total energy
transmittance.

Light transmittance

Selectivity characteristic =

Total energy transmittance

The selectivity characteristic is particularly important with regard to solar control glazing.  A high
selectivity characteristic (>1.5) means good solar control and, in spite of this, plenty of daylight.

Example
SILVERSTAR SUPERSELEKT 60/27 T: Light transmission = 60 %, g value = 27 %
Selectivity characteristic = 2.22

3.4.10. General colour rendering index (Ra)
The general colour rendering index is a measure of the change in the light (or its influence on the
rendering of colours, where eight different standardised shades are assessed) by a piece of glazing.

The higher the colour rendering index, the less colours are altered by the glazing. A rendering
index of 95 – 100 means very minor colour changes, while an index of 90 – 95 means minor colour
changes. The colour rendering index can be an important decision-making criterion, particularly
in the case of museums, galleries and craft and industrial activities where colours play a signifi-
cant role.

3.4.11. UV transmission
Generally, solar control glazing has UV transmission reduced roughly proportionally to the g val-
ue. Installing a UV-absorbing film in the laminated safety glass offers an option of additional UV
protection.  UV  radiation  can  be  reduced  completely  with  this  film.  Furthermore,  highly  photo-
chemical rays can become effective above 380 nm, with the ability to impair colours for example.
Extra caution is therefore advised, especially at altitudes above around 600 m above sea level
when shop/display windows, museums and the like are involved.

3.5. The U value

The heat transfer coefficient (U value) is the unit of measure for determining the heat loss of a
component. The U value specifies the amount of heat that passes per unit of time through 1 m

2

of a

component with a temperature difference of 1 K. The lower the U value, the lower the heat losses
to the outside and accordingly the lower the energy consumption.

background image

Glass Characteristics and Basic Physical Concepts I

31

3.

3.

For insulating glass, the U value (according to the test standard EN 673 termed Ug) is probably the
most important characteristic quantity. In practice the Ug value can be determined using certified
calculation methods for each individual insulating glass structure. It is to be noted that the Ug val-
ue applies to the so-called undisturbed area, i.e. without the influence of the edge area (in which
the heat flow is much greater). The edge seal is therefore of no importance to the Ug value. Only
when the U value is determined for the whole window (glass incl. window frame), the Uw value (w
= Window) does it have a bearing.

SILVERSTAR insulating glass achieves - thanks to highly efficient thermal insulation coatings - Ug
values up to 0.4 W/m

2

K. This equates to the insulation provided by a wooden wall at least 25 cm

thick.

Energy or heat transfer inside the insulating glass takes place in three different ways

Conduction, through the individual glass panes and through the gas or air fillings in the

cavities.

Convection, through flow of the gas or air fillings in the cavities.
Radiation, through heat radiation (long-wave infrared radiation) of the glass surfaces.

Heat radiation makes up by far the biggest share (approx. 2/3) of the heat loss. The thermal insu-
lation performance can be dramatically improved by using extremely thin and practically invisible
thermal insulation coatings.

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Conduction

Energy transfer in insulating glass without
thermal insulation coating

Energy  transfer  in  insulating  glass  with
thermal insulation coating

Radiation 67 %

Convection

33 %

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Conduction

Thermal insulation
coating

Radiation 7 %

Convection

33 %

background image

32

I Products – EUROFLOAT

4.

background image

Products – EUROFLOAT I

33

4.

4.  Products

4.1. EUROFLOAT – Uncoated basic glass

This provides the basis for all forms of glass, whether used in interior or exterior applications. Flat
glass is produced in a complex production process under enormous heat and the subsequent slow
cooling process. EUROFLOAT consists primarily of quartz sand. It acquires its striking green colour
from traces of iron oxide in the raw material. The use of low-iron raw materials produces brilliant
white glass – EUROWHITE.

4.1.1. Manufacture of float glass

The most important base material in the manufacture of float glass is quartz sand, a material that is in
plentiful supply in nature and will also be available to future generations in sufficient quantity. It also
needs soda, dolomite, lime and other raw materials in smaller quantities. Approximately 20 % clean
cullet is added to the mixture to improve the melting process. These raw materials enter the melting
furnace as a batch, where they are melted at a temperature of approx. 1550 °C and refined with minimal
bubbles. The liquid glass is then fed to the float bath, which contains a tin melt in a protective inert-gas
atmosphere. The glass mass "floats" on the molten tin in the form of an endless ribbon. The surface
tension of the glass and the flat surface of the tin bath cause a plane-parallel and distortion-free glass
ribbon of high optical quality to form. In the cooling tunnel and on the subsequent open roller conveyor,
the glass ribbon is continuously cooled down from 600 to 60 °C, monitored by camera technology for
defects, and then cut into glass sheets of predominantly 3210 x 6000 mm in size.

Diagram: float glass process

1 Batch charging

2 Melting furnace
approx. 1550 °C

3 Float bath

4 Cooling zone

Defect detection

5 Cutting

background image

34

I Products – EUROFLOAT

4.

1 Batch charging
The batch is weighed fully automatically and fed to an intermediate reservoir. From there it is placed
continuously into the bath. Depending on the bath size, up to 1200 tons of base materials are poured
in every day.

2 Melting
The batch is melted in the bath at a temperature of around 1550 °C. This is followed by the refining
zone, where the glass is refined with as few bubbles as possible and then prepared in a so-called
cooling tank for subsequent shaping by cooling down to around 1100 °C. The melting bath and the
cooling tank constantly contain up to 1900 tons of glass.

EUROGLAS melting bath/float glass plant, Hombourg, France

Batch house

Delivery of sand

Delivery of soda,
dolomite

Weighing

Metering

Mixing

Cullet batch

Tank preliminary
silo

Furnace

background image

Products – EUROFLOAT I

35

4.

3 Float bath
The liquid glass is cast onto a bath containing liquid tin. The process of adapting the lower surface to
the completely flat upper surface of the tin bath and simultaneous heating from above (fire-polishing)
produce plane-parallel glass equivalent to plate glass. The glass thickness is adjusted by so-called
top roll machines, which engage with the edge of the glass ribbon, and by means of heating and cool-
ing in the float bath, taking into account the drawing speed of the glass ribbon in the annealing lehr.
Without external influences, an equilibrium thickness of around 6 to 7 mm would be set. For a lower
glass thickness, the viscous glass mass must be sped up by means of the annealing lehr drawing
speed, and for a higher glass thickness it must be slowed down.

4 Cooling zone
After leaving the tin bath, the glass ribbon enters the more than 140 m long annealing lehr. It is
cooled down from approx. 600 to 60 °C. The slow, controlled cooling process ensures that the glass
mass solidifies without stress. This is important to ensure problem-free further processing.

5 Cutting
The  final  part  of  the  production  line  is  called
the  “cold  end”.  It  contains  the  quality  inspec-
tion  and  testing  and  the  cutting  sections.  The
entire  glass  ribbon  is  continuously  checked  by
camera  systems  for  the  smallest  defects.  Are-
as of the glass ribbon that fail to meet the high
quality standards can thus be immediately seg-
regated  and  withdrawn.  The  glass  is  then  cut
to  standard  dimensions  (3210  x  6000  mm)  and
stacked. The glass can be further prepared di-
rectly in accordance with customer dimensions
on  a  separate  cutting  line.  After  a  distance  of
400  m,  float  glass  has  been  created  from  pre-
dominantly natural raw materials – ready for de-
livery, ready for further processing.

Glass
600 °C

Annealing lehr

Heat dissipation of glass to the flow air

Cooling air from
above and below

Glass ribbon is visible
for the first time

Cold
Air

580 °C

480 °C

370 °C

60 °C

Cutting

Hot air

Cutting, float glass

background image

36

I Products – EUROFLOAT

4.

Glass with a length of 9 metres
In the EUROGLAS plants, where required, float glass up to a size of 3210 x 9000 mm can be produced
and also be provided over its full size with thermal insulation, solar control or combination coatings,
or further processed to make toughened safety glass, laminated safety glass and insulating glass.

The most important raw materials for float glass production

Float glass is further processed to make

Insulating glass
Laminated safety glass (LSG)
Toughened safety glass (TSG)
Thermal insulation glass
Solar control glass
Printed glass
Fire protection glass
Mirrors
etc.

Cutting

Emergency cutting
bridge

Transverse cut

Trimming break 1 and 2

Contour camera

Longitudinal cut

Crushing roller

Cullet belt          Defect detection

Trimming cutter

Float crusher 2

Float crusher 3

Stacking area

Float crusher 1

Line monitoring
cubicle

Thicknesses/
Stress
Measurement

Raw material

By % in weight

Quartz sand

~ 59 %

Soda

~ 18 %

Dolomite/lime

~ 20 %

Further raw materials

~ 3 %

Plus addition of clean cullet (recycling)

~ 20 %

background image

Products – EUROFLOAT I

37

4.

EUROFLOAT
Standard float glass with a slight green coloura-
tion, which can be clearly seen particularly at the
glass edges. The green colouration, also called
green tinge, originates from small quantities of
iron  oxide  contained  in  the  raw  materials.  The
standard sheet size is 3210 x 6000 mm. Larger
dimensions are possible on request.

EUROWHITE NG
Extra-white  glass  manufactured  from  raw  ma-
terials  that  are  particularly  low  in  iron  oxides
and  exhibiting  practically  no  natural  colour.
EUROWHITE  NG  is  used  mostly  for  aesthetic
and optical reasons. The standard sheet size is
3210 x 6000 mm. Larger dimensions are possible
on request.

and serves as the base material for

facades, windows, shop/display windows, roofs
glass cabinets, display cases and other glass furniture
fittings and furnishings in shop and interior finishing

4.1.2. Product range

EUROGLAS glass warehouse, Hombourg, France

background image

38

I Products – EUROFLOAT

4.

Technical data - EUROFLOAT

The values specified are calculated in accordance with the European standards EN 410:2011 and EN 673:2011 and
are  based  on  test  data.  Production  tolerances  in  accordance  with  applicable  EN  standards  may  give  rise  to  slight
discrepancies in the effective values. National standards or supplements (e.g. for the heat transfer coefficient U

g

) are

not taken into consideration.

EUROFLOAT

2 mm 3 mm 4 mm 5 mm 6 mm 8 mm 10 mm 12 mm

Light characteristics (EN 410)

Light transmittance

V

91 % 91 % 90 % 90 % 90 % 89 % 89 % 88 %

Light reflectance (exterior)

ρ

V

8 %

8 %

8 %

8 %

8 %

8 %

8 %

8 %

Light reflectance (interior)

ρ

VL

8 %

8 %

8 %

8 %

8 %

8 %

8 %

8 %

General colour rendering index
(transmission)

100

99

99

99

98

98

97

97

Energie characteristics (EN 410 / ISO 9050)

Total energy transmittance – g value

89 % 88 % 87 % 86 % 85 % 83 % 81 % 79 %

Direct radiation reflectance
(exterior) –

ρ

e

8 %

8 %

8 %

8 %

8 %

7 %

7 %

7 %

Direct radiation transmittance –

e

88 % 87 % 85 % 84 % 82 % 80 % 77 % 75 %

Direct radiation absorptance –

α

e

4 %

5 %

7 %

9 %

10 % 13 % 16 % 18 %

Transmission factor
(b factor, g value/0.87) – SC

102 % 101% 100 % 99 % 98 % 95 % 93 % 91 %

UV transmittance –

UV

79 % 75 % 71 % 68 % 66 % 61 % 58 % 55 %

Thermal characteristics (EN 673)

Heat transfer coefficient
U

g

in W/m²K

5.8

5.8

5.8

5.7

5.7

5.6

5.6

5.5

background image

Products – EUROFLOAT I

39

4.

Technical data - EUROWHITE NG

The values specified are calculated in accordance with the European standards EN 410:2011 and EN 673:2011 and
are  based  on  test  data.  Production  tolerances  in  accordance  with  applicable  EN  standards  may  give  rise  to  slight
discrepancies in the effective values. National standards or supplements (e.g. for the heat transfer coefficient U

g

) are

not taken into consideration.

EUROFLOAT

2 mm 3 mm 4 mm 5 mm 6 mm 8 mm 10 mm 12 mm

Light characteristics (EN 410)

Light transmittance

V

92 % 91 % 91 % 91 % 91 % 91 % 91 % 89 %

Light reflectance (exterior)

ρ

V

8 %

8 %

8 %

8 %

8 %

8 %

8 %

8 %

Light reflectance (interior)

ρ

VL

8 %

8 %

8 %

8 %

8 %

8 %

8 %

8 %

General colour rendering index
(transmission)

100

100

100

100

100

100

99

99

Energie characteristics (EN 410 / ISO 9050)

Total energy transmittance – g value

91 % 91 % 91 % 91 % 91 % 90 % 90 % 89 %

Direct radiation reflectance
(exterior) –

ρ

e

8 %

8 %

8 %

8 %

8 %

8 %

8 %

8 %

Direct radiation transmittance –

e

91 % 91 % 91 % 90 % 90 % 90 % 89 % 88 %

Direct radiation absorptance –

α

e

1 %

1 %

1 %

2 %

2 %

2 %

3 %

4 %

Transmission factor
(b factor, g value/0.87) – SC

105 % 105% 105 % 105 % 105 % 103 % 103 % 102 %

UV transmittance –

UV

87 % 86 % 85 % 83 % 82 % 80 % 78 % 76 %

Thermal characteristics (EN 673)

Heat transfer coefficient
U

g

in W/m²K

5.8

5.8

5.8

5.7

5.7

5.6

5.6

5.5

background image

40

I Products – EUROFLOAT

4.

4.1.3. Physical and chemical properties of flat glass

4.1.3.1. Definition and composition
The glass that we use today as a building material is, due to its composition, called soda-lime silicate
glass. The raw materials are heated during production. The subsequent cooling process means that
the ions and molecules do not have the opportunity to arrange themselves. Silicon and oxygen cannot
combine into crystals, the random molecular state is “frozen”. Glass therefore consists of an irregu-
larly and spatially interlinked network of silicon (Si) and oxygen (O), in the gaps of which cations are
dispersed. When glass is heated to about 1000 °C and this temperature is maintained for a certain
time, so-called devitrification begins. This process sees the creation of silicon crystals which are
segregated from the actual glass mass. This process results in milky-opaque glass.

Glass is not a solid in the chemical-physical sense, but rather a solidified liquid. The molecules are
random and molecular lattices are not formed. This circumstance is often given as the reason for the
transparency of the substance. There are however other theories besides this: one theory, for exam-
ple, attributes the transparency to the fact that silicon oxide is a very stable compound that does not
exhibit any free electrons which can interact with light radiation.

Simplified diagrammatic representation of the structures of float glass (left) and crystalline SiO

2

Na

Na

Na

Na

Na

Na

Na

Na

background image

Products – EUROFLOAT I

41

4.

Because glass consists of different compounds,
there  are  no  chemical  formulae  for  calculating
the  physical  properties.  Glass  has  no  melting
point, like that of other substances such as wa-
ter, that is liquid above 0 °C and crystallises into
ice  below  0  °C.  When  subjected  to  heat,  glass
passes continuously from a solid (high-viscosity)
to a liquid (low-viscosity) state. The temperature
range between solid, brittle and plastically vis-
cous  states  is  often  called  the  transformation
range.  For  float  glass,  this  is  between  520  and
550 °C. As a rough simplification, it is possible
to derive from it the mean value 535 °C, which is
called  the  transformation  point  or  transforma-
tion temperature (Tg).

The  situation  where  glass  is  rightly  referred  to  as  a  frozen  liquid  often  gives  rise  to  the
opinion  that  glass  would  also  flow  continuously  in  the  solidified  state,  albeit  very  slow-
ly.  A  glass  pane  standing  upright  would,  after  a  sufficiently  long  period  of  time  (decades
or  centuries),  become  measurably  thicker  at  the  bottom  end.  But  this  is  not  true.  Today  it  is
a  scientifically  established  fact  that  a  glass  body  at  usage  temperatures  does  not  change  its
shape due to its own gravity load unless there is a bending deflection in the structural sense.

When  compared  with  many  crystals,  glass  has  an  amorphous  isotropy,  i.e.  the  properties  are
not dependent on the direction in which they are measured.

Composition of soda-lime glass

Schematic representation of the changes in properties
(solid/liquid) of crystalline and vitreous substances

Undercooled
melt

Melt

Crystal

Temperature

T

g

T

melt

Vo

lu

m

e

Glass

Raw material

Chemical formula

Proportion

Silicon dioxide

(SiO

2

)

69 % – 74 %

Sodium oxide

(Na

2

O/soda)

12 % – 16 %

Calcium oxide

(CaO)

5 % – 12 %

Magnesium oxide

(MgO)

0 % – 6 %

Aluminium oxide

(Al

2

O

3

)

0 % – 6 %

background image

42

I Products – EUROFLOAT

4.

4.1.3.2. Mechanical properties

Tensile and compressive strength
The  silicate  basic  mass  gives  glass  hardness  and  strength,  but  also  the  familiar  and  unwelcome
property of brittleness: a property that must be taken into account in every application. Glass, unlike
metals for example, has no plastic range; it is elastic up to its breaking point. Breakage therefore
occurs suddenly, without any visible signs in advance.

The  compressive  strength  of  glass  is  very  high,  far  outstripping  that  of  other  building  materials,
and therefore poses no problems when glass is used in practical building applications. The crucial
factor is tensile strength, in particular bending tensile strength. It is well known that glass fibres ex-
hibit very high tensile strength. However, there is a big difference between the load-bearing capacity
of a glass fibre and that of a glass pane. The load-bearing strength of a glass pane in practical terms
is dependent not on the cohesion in the chemical structure, but on other influencing factors. Glass is
in reality not a fully compact body, but instead has numerous discontinuities, manifesting as surface
defects in the form of microcracks and notches. In the final analysis, it is these that determine the
practical strength. It is also noticeable that the strength decreases with the load duration; different
permissible stresses therefore often apply in practice, depending on the type of load duration. A typ-
ical short-term load is for example wind load, whereas snow loads take effects over the longer term.

Theoretical and practical tensile strength

Glass type

Tensile strength

Theoretical tensile strength of soda-lime glass (fracture)

13000 N/mm

2

Practical tensile strength of soda-lime glass (fracture)

30 – 80 N/mm

2

Glass

Fracture

δ (P)

Elastic

range

Steel

Fracture

perm. δ

δ (P)

Elastic          Plastic

range

Elastic

Yield

Fracture

perm. δ

δ (P)

Elastic

Elastic        Plastic

range

Wood

Str

es

s

(f

or

ce)

Ε(∆l)

Ε(∆l)

Ε(∆l)

Displacement/force diagram of glass, steel and wood in comparison

background image

Products – EUROFLOAT I

43

4.

Comparison of strengths of different materials (approximate values)

Modulus of elasticity

Material

Elasticity

Float glass/plate glass

70000 N/mm

2

Toughened safety glass made of float glass

70000 N/mm

2

Aluminium

70000 N/mm

2

Structural steel

210000 N/mm

2

Oak

12500 N/mm

2

Beech

11000 N/mm

2

Material

Permissible bending stress

Compressive
strength

Float glass/plate glass

12 – 20 N/mm

2

400 N/mm

2

Toughened safety glass made of float glass

50 N/mm

2

400 N/mm

2

Aluminium

70 N/mm

2

70 N/mm

2

Structural steel

180 N/mm

2

180 N/mm

2

Oak

50 N/mm

2

30 N/mm

2

Beech

35 N/mm

2

25 N/mm

2

background image

44

I Products – EUROFLOAT

4.

Material bulk density

Reference quantity for everyday application: 1 m

2

glass weighs per mm thickness 2.5 kg.

1 m

2

float glass of 6 mm thickness weighs 6 x 2.5 kg/m

2

= 15 kg/m

2

.

Surface hardness
Compared with other materials, such as wood, metals and plastics, glass has a very hard surface.

Scratch hardness according to Mohs (HM)

Scratches are visible from a depth of around 100 nm (0.0001 mm) and noticeable from around
2000 nm (0.002 mm). On coated glass, scratches are already visible from a depth of around 10 nm!

4.1.3.3. Thermal properties

Coefficient of thermal expansion
Compared with other materials, glass has a low thermal expansion that is also dependent on the
composition.  Glass-ceramics,  for  example,  demonstrate  practically  no  thermal  expansion,  and
sos there are no stresses that can arise from zones subject to different levels of heating. (See also
Temperature change resistance)

The  coefficient  of  expansion  of  9.0  x  10

-6

/K  means  that  a  pane  of  float  glass  1  metre  long

when  heated  by  100  °K  expands  by  0.9  mm.  For  aluminium,  the  analogous  value  would  be
2.4 mm.

Material

Density

Soda-lime glass

2.5 g/cm

3

Radiation shielding glass RD 50

5.0 g/cm

3

Aluminium

2.6 g/cm

3

Steel

7.9 g/cm

3

Concrete

2.0 g/cm

3

Lead

11.3 g/cm

3

Material

Scratch hardness

Apatite

5 HM

Soda-lime glass  (float glass, window glass, ornamental glass)

5 – 6 HM

Feldspar

6 HM

Quartz

7 HM

background image

Products – EUROFLOAT I

45

4.

Coefficient of thermal expansion

Thermal conductivity
Compared with metals, the ability of glass to conduct heat is indeed very low, but compared with
conventional insulation materials is high. But it plays an unimportant role in practical building appli-
cations, since the extraordinarily good thermal insulation of insulating glass is founded in particular
on the effect of thermal insulation coatings.

Coefficient of thermal conductivity

Material

Thermal expansion

Soda-lime glass  (float glass, window glass, ornamental glass)

9.0 x 10

-6

/K

Borosilicate glass

3 – 4 x 10

-6

/K

Quartz glass

0.5 x 10

-6

/K

Glass-ceramics

0.0 x 10

-6

/K

Aluminium

24 x 10

-6

/K

Steel

12 x 10

-6

/K

Concrete

10 – 12 x 10

-6

/K

Material

Coefficient of thermal
conductivity

Soda-lime glass  (float glass, window glass, ornamental glass)

1.0 W/mK

Aluminium

210.00 W/mK

Steel

75.00 W/mK

Concrete

1.00 W/mK

Wood (spruce)

0.14 W/mK

Cork

0.05 W/mK

Polystyrene

0.04 W/mK

background image

46

I Products – EUROFLOAT

4.

Temperature change resistance
Temperature change resistance denotes the capacity to withstand an abrupt change of temperature.
It is given in degrees Kelvin and constitutes a measure of the probability of so-called thermal shock,
i.e. a fracture as a result of thermal overloading. The higher the temperature change resistance of
a piece of glass, the lower the danger of thermal shock. However, it is not possible to make a direct
inference from the temperature change resistance to maximum permissible surface temperatures
of glazing, in that the temperature distribution in the component in particular is the crucial factor.

Temperature change resistance

4.1.3.4. Chemical properties
Float glass is highly resistant to virtually all chemicals. One exception is hydrofluoric acid (HF), which
is used to etch glass. However, glass is also not absolutely stable against many aqueous solutions
either: both acids and in particular base solutions can attack the surface.

Effect of acids
An  ion  exchange  occurs,  in  which  for  example
Na

+

and  Ca

2

+

ions  are  exchanged  for  H

+

ions

without  the  SiO

2

network  being  attacked.  This

process therefore does not leave any visible trac-
es. A similar process is even used to finish glass,
in so-called chemical tempering.

Effect of lyes/alkaline solutions
In  this  process,  the  lye  reacts  with  the
SiO

2

network.  This  produces  soluble  silicic

acids,  destroying  the  glass  structure.    Visible
causticisations  are  left,  for  example  when  ce-
ment slurry is spilled on glazing. Even after just
a  short  standing  time,  the  surface  is  attacked
and irreparable damage is incurred.

Glass type

Temperature change resistance

Float glass

40 °K

Toughened safety glass (TSG)

150 °K

Borosilicate glass

260 °K

Glass-ceramics

> 300 °K

Na

+

H

+

Cl

-

Na

+

OH

-

HSiO

3

-

background image

Products – EUROFLOAT I

47

4.

Glass corrosion in the boundary area of water
and air
Glass that is left standing in water for an extend-
ed period of time can be damaged in the bound-
ary areas between water and air by a chemical
process. The separation of sodium ions can pro-
duce soda lye in combination with water. When
the  water  is  constantly  exchanged,  this  lye  is

strongly diluted straight away and thus rendered harmless. In the transition area between water and
air where the water is only slightly exchanged or in the event of an attack by stagnant water, dilution
does not take place, and so the surface of the glass can be damaged by the soda lye produced.

4.1.3.5. Radiation-physical properties
An outstanding property of glass is its capacity to transmit solar radiation, particularly light. This
feature, allied with the high strength of its hard surface and its extraordinarily high resistance, makes
glass a unique, practically irreplaceable building material.

Spectral subdivision of solar radiation

Spectral transmissibility of float glass of different thicknesses

Wavelength λ (nm)

2 mm

100

60

80

40

20

0

200

1000

1600

2200

2800

400

1200

1800

2400

600

800

1400

2000

2600

Tr

an

smi

ssi

bi

lit

y

%

4 mm
6 mm

10 mm

Solar radiation

Wavelength range

Ultraviolet radiation (UV radiation)

320 – 380 nm

Light radiation

380 – 780 nm

Infrared radiation (IR radiation)

780 – 3000 nm

background image

48

I Products – EUROFLOAT

4.

background image

Products – EUROFLOAT I

49

4.

Radiation-physical data - EUROFLOAT

Radiation-physical data - Float EUROWHITE NG (extra-white float glass)

Nominal thickness  Light transmittance

Light reflectance

g value

U value

2 mm

92 %

8 %

91 %

5.8 W/m

2

K

3 mm

91 %

8 %

91 %

5.8 W/m

2

K

4 mm

91 %

8 %

91 %

5.8 W/m

2

K

5 mm

91 %

8 %

91 %

5.7 W/m

2

K

6 mm

91 %

8 %

91 %

5.7 W/m

2

K

8 mm

91 %

8 %

90 %

5.6 W/m

2

K

10 mm

91 %

8 %

90%

5.6 W/m

2

K

12 mm

91 %

8 %

89 %

5.5 W/m

2

K

15 mm

90 %

8 %

89 %

5.4 W/m

2

K

19 mm

90 %

8 %

88 %

5.3 W/m

2

K

Nominal thickness Light transmittance

Light reflectance

g value

U value

2 mm

91 %

8 %

89 %

5.8 W/m

2

K

3 mm

91 %

8 %

88 %

5.8 W/m

2

K

4 mm

90 %

8 %

87 %

5.8 W/m

2

K

5 mm

90 %

8 %

86 %

5.7 W/m

2

K

6 mm

90 %

8 %

85 %

5.7 W/m

2

K

8 mm

89 %

8 %

83 %

5.6 W/m

2

K

10 mm

89 %

8 %

81 %

5.6 W/m

2

K

12 mm

88 %

8 %

79 %

5.5 W/m

2

K

15 mm

87 %

8 %

77 %

5.4 W/m

2

K

19 mm

86 %

8 %

74 %

5.3 W/m

2

K

background image

50

I Products – EUROFLOAT

4.

4.1.3.6. Further properties

Sound reduction
Thanks to its density, glass is perfectly suitable for sound reduction. However, compared with other
building materials (brick, concrete, wood, etc.), glass is generally only installed in very low thickness-
es, and thus this statement becomes relative. Optimum sound reduction values are achieved with
appropriately  structured  insulating  glass  or  with  special  laminated  safety  glass  elements,  whose
element thicknesses are comparatively still very low.

Sound reduction values of glass and other building materials

Resistance
Glass is one of the most resistant building materials imaginable.
Glass

does not rust
does not rot
is not afflicted by mould/fungus
does not weather
does not discolour
does not absorb moisture
does not exude moisture
does not swell
does not shrink
does not warp
resists cold and heat
does not become either brittle or soft
is UV- and light-resistant

Building material

Thickness

Weighted sound reduction index R

W

Float glass

3 mm

≈ 28 dB

6 mm

≈ 31 dB

12 mm

≈ 34 dB

LSG with sound-insulating film

12 mm

39 dB

Sound insulation glass

40 mm

50 dB

Wooden wall structure

80 mm

≈ 35 dB

Brick wall

200 mm

≈ 50 dB

background image

Products – EUROFLOAT I

51

4.

4.1.3.7. Summary of the most important technical characteristic values of float glass

Property

Symbol

Numerical value and unit

Density (at 18 °C)

ρ

2500 kg/m

3

Hardness

6 units (acc. to Mohs)

Modulus of elasticity

E

7 x 10

10

Pa

Poisson's ratio

µ

0.2

Specific heat capacity

c

0.72 x 10

3

(J/kg x K)

Mean coefficient of linear thermal
expansion between 20 and 300 °C

α

9 x 10

-6

/K

Thermal conductivity

λ

1 W/mK

Mean refractive index in the visible
range (380 to 780 nm)

n

1.5

Prime Tower – Swiss Platform, Zurich/Photographer: Hans Ege

background image

52

I Products – EUROFLOAT

4.

4.1.4. Available range and packing

Available range, lehr end sizes (LES)

EUROFLOAT

EUROWHITE NG

Special lengths and the glass thicknesses 2 mm, 15 mm and 19 mm on request.

Available range, split lehr end sizes (SLES)

EUROFLOAT

EUROWHITE NG

Special lengths and the glass thicknesses 15 mm and 19 mm on request.

Dimensions

Thicknesses

3210 x 6000 mm

3 - 12 mm

3210 x 5100 mm

3 - 12 mm

3210 x 4500 mm

3 - 12 mm

Dimensions

Thicknesses

2550 x 3210 mm

3 - 12 mm

2250 x 3210 mm

3 - 12 mm

2000 x 3210 mm

3 - 12 mm

Dimensions

Thicknesses

2550 x 3210 mm

3 - 12 mm

2250 x 3210 mm

3 - 12 mm

2000 x 3210 mm

3 - 12 mm

Dimensions

Thicknesses

3210 x 6000 mm

3 - 12 mm

background image

Products – EUROFLOAT I

53

4.

Packing EUROFLOAT / EUROWHITE NG LES / SLES

Packing EUROFLOAT / EUROWHITE NG fixed dimensions (FD)

*on request
Maximum length: 2520 mm

Dimensions and tolerances – Glass thickness tolerance

Nominal thicknesses and tolerances according to EN 572.

Thicknesses in mm

3

4

5

6

8

10

12

2000 x 3210 mm number of sheets per pack

41

32

25

21

16

13

10

2250 x 3210 mm number of sheets per pack

41

32

25

21

16

13

10

2550 x 3210 mm number of sheets per pack

41

32

25

21

16

13

10

3210 x 4500 mm number of sheets per pack

-

18

14

11

9

7

6

3210 x 5100 mm number of sheets per pack

21

15

12

10

8

7

7

3210 x 6000 mm number of sheets per pack

18

15

12

10

7

6

5

3210 x 6000 mm number of sheets per pack

34

25

20

16

12

10

8

3210 x 6000 mm number of sheets per pack

36

26

3210 x 6000 mm  number of sheets per pack

30

Endcaps

Height

Thicknesses

Number of sheets

E 01

800 - 900 mm

3 mm

73

E 02

901 - 980 mm

3.1* mm

70

E 03

981 - 1060 mm

4 mm

55

E 04

1061 - 1140 mm

5 mm

44

E 06

1141 - 1280 mm

6 mm

36

E 07

1281 - 1370 mm

8 mm

27

E 09

1371 - 1520 mm

10 mm

22

E 10

1521 - 1600 mm

Nominal thicknesses in mm

Thickness tolerance

EUROFLOAT

EUROWHITE NG

Permitted divergences  in mm

3

3

+/- 0.2

4

4

+/- 0.2

5

5

+/- 0.2

6

6

+/- 0.2

8

8

+/- 0.3

10

10

+/- 0.3

12

12

+/- 0.3

background image

54

I Products – SILVERSTAR

4.

Plexus Granges-Paccot, Fribourg/Photographer: Hans Ege

background image

Products – SILVERSTAR I

55

4.

4.2. SILVERSTAR – Coated glass

The right U and g values for every requirement
Windows in winter were long regarded as “heat bridges”, while in summer life behind glass could be
made a misery by the greenhouse effect.

The reason for overheating in the summer is the different capacity of glass to transmit short-wave
and long-wave radiation. Radiated solar energy is converted in the room by absorption and emission
into long-wave heat radiation, which cannot escape through the glass (greenhouse effect, see 3.2.).
In winter, transmission heat losses in the case of poorly insulating glass lead to cooling of the room-
side surfaces, with the result that room occupants near these surfaces feel uncomfortable.

Glass coatings offer excellent solutions to both these problems. The range of demands placed on
light and energy transmittance by modern insulating glazing for the huge variety of building shapes is
very wide. For this reason, there is no single all-round coating for all applications, but instead a finely
matched range of SILVERSTAR glass coatings for thermal insulation and solar control. The desired
radiation properties are selectively set here.

Areas of application

For new buildings and renovations
For residential buildings, in conservatories
For Minergie buildings and passive houses
In office complexes and public buildings
For commercial and industrial buildings

Two mechanisms

Insolation:
In summer/throughout the day

Cooling:
In winter/throughout the night

T

T

background image

56

I Products – SILVERSTAR

4.

Insolation (solar radiation)
Solar radiation that impinges on a surface is broken down into the following components:

Cooling (heat radiation)
Every heat flow – even the transmission heat loss through a pane of insulating glass – is made up of
three components.

In the case of uncoated double insulating glass,
heat  conduction  and  convection  together  make
up 1/3 while radiation makes up 2/3 of the heat
losses.

SILVERSTAR manufacture and finishing
Insulating glass has for decades been upgraded with translucent and heat-reflecting coatings. In-
ternationally, the high-vacuum magnetron process has won acceptance as the coating technology of
choice. This process is used for all SILVERSTAR coatings.

Component

Description

Possibilities for influencing this component in

glass

Reflection

Proportion of radiation that

is reflected at the boundary

surface

I

ncrease in reflection by special coatings

Reduction in reflection by special optical-

interference coating (antireflection)

Absorption

Proportion of radiation

absorbed and dissipated

again as heat (secondary

heat output)

Reduction in absorption by the use of white

glass

Increase in absorption by the use of tinted

glass

Increase in absorption by special coatings

Transmission

Proportion of radiation that

passes unhindered through

the material

Reduction in transmission by increase in the

reflection and/or absorption proportion

Increase in transmission by reduction in the

reflection and/or absorption proportion

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Conduction

Radiation 67 %

Convection

33 %

background image

Products – SILVERSTAR I

57

4.

Diagram of a high-vacuum magnetron system

Principle of cathodic evaporation (sputtering)

Sputtering:   Dislodging of atoms from the target material by means of ion bombardment.
Vacuum:

The gas contained in a sealed cavity has been removed by means of suitable

vacuum pumps.

Cathode:

Negative electrode of an electrical discharge.

Anode:

Positive electrode of an electrical discharge.

Ion:

An ion is an electrically charged molecule which has lost one or more electrons.

Nanometre:  1 nanometre = 10

–9

m =  1 thousand-millionth metre or 1 millionth millimetre

Unloading

Loading

System control room
and monitoring station

Outward-transfer
chamber

Inward-
transfer chamber

Monitoring station

Washing
machine

Sputter chambers
and cathodes

U = -500 V

Ar molecule (neutral)
Ar ions (+)
Electrons (-)

Gas inlet

Gas inlet

Target

Plasma

Target atoms

Anode +

+ anode

Glass pane

Cathode -

Plasma formation in
the sputter process

background image

58

I Products – SILVERSTAR

4.

In the magnetron process, the coatings are applied subsequently, after float glass production. Older
coating processes that are hardly used any longer are pyrolysis and the immersion (dipping) process.

In the case of pyrolysis, liquid metal oxides are sprayed directly onto the hot glass during float glass
production. These coatings are very hard, but considerably less effective. Pyrolytically coated glass
can also be used, with reservations, as single glazing. Environmental influences can cause coating
changes in the case of coatings positioned on the side exposed to the weather.

In the immersion process, glass is immersed in a bath of hot, liquid metal oxides and then burned in.
The coatings created in this process are always on both sides of a pane. This means that when the
glass is assembled into insulating glass one coating is always exposed to the weather.

Product properties
The SILVERSTAR coatings applied in the magnetron process consist of several extremely thin metal
or metal oxide coatings in the nano range.

Schematic coating structure of a SILVERSTAR thermal insulation coating

Covering coating
Oxide 2  = protective coating
Blocker  = barrier coating
Silver

= function coating

Oxide 1  = adhesive coating

Float glass

The  thicknesses  of  the  individual  coatings  are
used to determine technical data (e.g. colour, g
value, transmission and angle dependence).

The thickness of a SILVERSTAR glass coating is, depending on the coating package, 40 – 160 nm (na-
nometres). Due to the high colour neutrality in reflection and transmission, SILVERSTAR coated glass
is barely distinguishable from normal float glass. The SILVERSTAR coatings are subject to continuous
further development.

The needs and requirements as to how much solar energy and heat radiation are to be transmitted
are varied. The specific values are adapted by different coatings. Normal float glass has the property
of transmitting solar energy and heat radiation in a particular wave range. These properties are al-
tered by different coatings in such a way  as to create thermal insulation glass, solar control glass or
a combination of both.

background image

Products – SILVERSTAR I

59

4.

There are essentially three different coating types:

Selection of the wavelength (nm) of the solar spectrum
through SILVERSTAR coatings (setup:  6/16/4)

380 nm

788 nm

UVm

Light

Infrared = heat radiation

approx. 5 %  approx. 45 %   approx. 50 %

Float

SELEKT

COMBI Neutral 61/32

COMBI Neutral 51/26

COMBI Neutral 41/21

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

2400

2300

2200

2100

2000

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

SILVERSTAR

thermal insula-

tion coating

Reduces the heat radiation of the glass surface,

resulting in a low U

g

value.

SILVERSTAR

solar control

coating

Guarantees good sun protection thanks to low

solar energy transmittance with neutral to

colour-accentuated light reflection.

SILVERSTAR

COMBI

coatings

Ensures a good solar control function combined

with thermal insulation.

background image

60

I Products – SILVERSTAR

4.

4.2.1. SILVERSTAR thermal insulation coatings

Efficient thermal insulation
The transmission heat losses are high in the case of insulating glass made from normal float glass.
However, a U

g

value that is as low as possible is crucial to energy-efficient building. SILVERSTAR

thermal insulation coatings keep valuable heat radiation in the room, but at the same time permit the
greatest possible gain of solar energy thanks to a high g value. High light transmission, a high colour
rendering index and the optimum colour neutrality are further hallmarks of SILVERSTAR thermal
insulation coatings.

Overview of SILVERSTAR thermal insulation coatings

Position of the SILVERSTAR thermal insulation coating

Function

Coating types

U

g

value

g value

LT value

Thermal insulation

double*

SILVERSTAR EN2plus

SILVERSTAR EN2plus T

SILVERSTAR ZERO NG

SILVERSTAR ZERO E***

1.1 W/m²K

1.1 W/m²K

1.0 W/m²K

1.0 W/m

2

K

64 %

64 %

54 %

58 %

82 %

82 %

76 %

78 %

Thermal insulation

triple**

SILVERSTAR EN2plus

SILVERSTAR EN2plus T

SILVERSTAR TRIII E

0.6 W/m²K

0.6 W/m²K

0.7 W/m²K

53 %

53 %

62 %

74 %

74 %

73 %

*     Double insulating glass SILVERSTAR thermal insulation, pane structure float 2 x 4 mm; cavity 16 mm argon
**   Triple insulating glass SILVERSTAR thermal insulation, pane structure float 3 x 4 mm; 2 x cavity 14 mm argon
*** The declared values are within the permitted tolerances of EN 1096. These tolerances are for the light-related
and radiation-physics values ± 0.03 and for the emissivity + 0.02.
On the basis of the European standard, the basic glass SILVERSTAR ZERO E can be processed to make
CE-compliant insulating glass.

SILVERSTAR thermal insulation coatings for double insulating glass in position 3
and for triple insulating glass in positions 2 and 5

1      2       3       4

1      2      3     4     5       6

background image

Products – SILVERSTAR I

61

4.

4.2.1.1. Use as thermal insulation glass

Utilising the sun's energy with efficient thermal insulation
Modern insulating glass for energy-efficient building must exhibit high thermal insulation, i.e. have
a U

g

value that is as low as possible. On the other hand it, it is desirable, in order to utilise free so-

lar energy, to let as much sunlight into the room as possible. SILVERSTAR thermal insulation glass
keeps valuable heat radiation in the room, but at the same time thanks to a high g value permits the
greatest possible gain of solar energy.

Function of thermal insulation glass
The  particular  coating  system  delivers  the  outstanding  thermal  insulation  values  of  SILVERSTAR
insulating glass. It has the property of transmitting short-wave solar radiation almost unhindered
(transmission), and on the other hand of reflecting long-wave radiation such as for example thermal
or body heat. The pane is thus impermeable to most heat radiation. The heat is kept in the room, sig-
nificantly reducing the energy loss. The g value specifies how much energy from the impinging solar
radiation (in %) passes through the glazing into the room. The higher the g value, the more energy is
delivered through the glazing inwards. SILVERSTAR E thermal insulation glass exhibit high g values
even at low U

g

values and therefore guarantee maximum heat gain.

SILVERSTAR thermal insulation glass manufacture and finishing
An extremely thin, barely discernible coating system is applied to float glass by means of a technically
sophisticated high-vacuum magnetron coating process.

To  optimise  thermal  insulation,  the  cavity  of  SILVERSTAR  insulating  glass  is  usually  filled  with  a
thermal insulation gas.

Reflection

Reflection

Solar energy

Solar energy
transmittance

Heat conductivity

Secondary output

Secondary output

Heat energy

background image

62

I Products – SILVERSTAR

4.

4.2.1.2. Combination possibilities

EUROLAMEX SILVERSTAR / EUROLAMEX S PHON SILVERSTAR

The SILVERSTAR thermal insulation coatings are also possible on all EUROLAMEX and EUROLAMEX
S PHON glass. In this way, thermal insulation is combined with safety or sound control functions. The
double-pane laminated glass has on one side a coating that is exposed and not applied up to the seal.

The technical data are by and large the same as those of SILVERSTAR-coated glass without a seal.

EUROWHITE NG SILVERSTAR

Likewise all thicknesses and sizes of SILVERSTAR-coated glass are also available on the extra-white
EUROWHITE NG glass.

The technical values are thereby improved as follows:

Coating on

EUROWHITE NG

Light trans-

mission

Improvement

compared with

EUROFLOAT

Total energy

transmittance

Improvement

compared with

EUROFLOAT

SILVERSTAR EN2plus, double 83 %

+ 1%

68 %

+ 4%

SILVERSTAR ZERO NG, double 78 %

+ 2 %

56 %

+ 2 %

SILVERSTAR TRIII E, triple

75 %

+ 2 %

67 %

+ 5 %

Double insulating glass, pane structure EW NG 2 x 4 mm; 1 x cavity 16 mm argon, coating in position 3
Triple insulating glass, pane structure EW NG 3 x 4 mm; 2 x cavity 16 mm argon, coating in positions 2 and 5

4.2.1.3. Available range

The glass is available in the following standard dimensions and packings:

Thicknesses

2250/2550 x 3210 mm

number of sheets per pack

3210 x 6000 mm

number of sheets per pack

4 mm

30

13/25

5 mm

10/20

6 mm

20

8/16

8 mm

6/11

10 mm

5/10

Other dimensions, thicknesses and packaging possible on request

To protect the coating, each packaging unit receives a 4 mm float glass top pane or, in the case of
coated laminated safety glass, an LSG 6.1 protection sheet.

background image

Products – SILVERSTAR I

63

4.

4.2.2. SILVERSTAR solar control coatings

Effective against the sun
In the case of insulating glass made from normal float glass, sunlight may give rise to substantial
heating of rooms. SILVERSTAR solar control coatings work primarily by reflecting the impinging solar
energy and thereby reducing the input of energy into the interiors. The light, i.e. the visible proportion
of the sunlight, should however illuminate the interior sufficiently.

The crucial value that characterises solar control glass is the g value. The lower the g value, the
lower the energy transmittance and the slower the rate of heating.

Overview of SILVERSTAR solar control coatings

Triple insulating glass, pane structure float 1 x 6 mm, 2 x 4 mm; 2 x cavity 12 mm argon
Solar control coating in position 2; thermal insulation coating SILVERSTAR EN2plus in positions 3 and 5

SILVERSTAR solar control coating in position 2

SILVERSTAR solar control coating in position 2,
SILVERSTAR thermal insulation coating in
positions 3 and 5

1       2        3     4

Function

Coating types

U

g

value

g value LT value

Solar control

SILVERSTAR SUNSTOP Neutral 50 T

0.7 W/m²K 32 %

42 %

SILVERSTAR SUNSTOP Blue 50 T

0.7 W/m²K 31 %

40 %

SILVERSTAR SUNSTOP Blue 30 T

0.7 W/m²K 19 %

24 %

SILVERSTAR SUNSTOP Silver 20 T

0.7 W/m²K 14 %

17 %

1      2     3      4     5       6

background image

64

I Products – SILVERSTAR

4.

Large-area glazing has become the obvious choice in modern buildings, but in the summer months
the unwelcome heating up of rooms can be a problem. Solar control insulating glass helps here:
it lets the daylight through, but reduces the amount of incident solar energy. Extremely thin solar
control coatings applied to the glass in the SILVERSTAR magnetron process reduce excessive solar
radiation into the room, by reflection and absorption, and with it excessive heating up of the room.

Optimum utilisation of natural daylight is nevertheless assured thanks to the high light transmission.

Insulating glass with SILVERSTAR magnetron coating satisfies the varying demands placed on con-
temporary architecture.

The benefits of solar control glass

Reduction in solar energy transmittance
Effective protection against unwanted room heating
Reduction in the cooling and heating energy demand in summer
In combination with a good thermal insulation coating, low energy consumption in winter
Greater comfort and a pleasant temperature level
High light transmission, for optimum utilisation of natural daylight
Depending on the architecture, neutral or colourfully brilliant appearance
Combinable with solar control and safety functions

EUROGLAS offers a wide selection of solutions and products for reconciling aesthetic and functional
needs and for covering individual requirements, and so meeting the high expectations of building
sponsors and architects.

Solar control variants
The g value, the light transmission and the visual appearance can be influenced by factors such as
the coating material, the coating thickness and the colour of the glass. Every solar control coating is
optimised in such a way that high light transmission is maintained, despite low energy transmittance.

Another possibility is to use SILVERSTAR ROLL. In this insulating glass variant, slat blinds or gath-
ered fabric are integrated into the cavity and can be manually or automatically controlled.

4.2.2.1. Function of solar control insulating glass

Solar radiation
Sun equals radiation. The sun can, depending on its altitude and the time of year, release huge quan-
tities of energy. Thus, for example, the insolation of solar energy on a summer's day around noon on
a horizontal surface can amount to approximately 800 W/m

2

.

background image

Products – SILVERSTAR I

65

4.

While normal insulation glazing consisting of 2 x 4 mm float glass transmits solar energy at up to
around 80 %, solar control glass can sometimes reduce total energy transmission to under 15 %.

The solar spectrum is composed of:

Ultraviolet radiation approx. 320 – 380 nm (approx. 4 %)
Visible radiation approx. 380 – 780 nm (approx. 45 %)
Infrared radiation approx. 780 – 3000 nm (approx. 51 %)

In the visible range, not only light but also a large part of the solar energy is radiated. To ensure
effective solar control, it is therefore necessary to put up with a reduction in light transmission. For
more information, see Chapter 3.

The most important terms associated with solar control glass
When it comes to solar control glass in particular, three physics terms – and thus also three numer-
ical values – are of crucial importance.

Transmission – Passing through of the sun's rays
Reflection – Throwing back of the sun's rays; mirror effect
Absorption – Taking in of the sun's rays; dark surface

At a glance
How solar control glass with magnetron coating works in terms of radiation physics

The g value = total energy transmittance
The total energy transmittance is, beside the the U value, the most important characteristic quantity
for solar control glazing. It indicates how much of the outward-impinging solar energy ultimately
passes into the room interior. For an optimum solar control effect, the g value should be as low as
possible.

100 %

Reflection

Radiation and
convection

Radiation and
convection

Transmission

Reflection coating

background image

66

I Products – SILVERSTAR

4.

The total energy transmittance denotes the sum
total of radiation transmission RT and secondary
heat output Q

i

to the inside.

ST + Q

i

= g value

The greenhouse effect – For more information, see Chapter 3.2.
Operation in terms of radiation physics – For more information, see Chapter 3.3.
Glass characteristics – For more information, see Chapter 3.4.

Coating and/or tinting
The glass for solar control is either tinted, printed, coated or tinted-and-coated.

Tinted glass

The glass mass acquires its tinting from the admixture of metal oxides. Be-

cause the radiation absorptance of tinted glass is really high, this glass must

usually  be  tempered.  This  increases  the  temperature  change  resistance,

helping to avoid thermally induced glass fractures. The solar control effect

of this glass is based on the principle of radiation absorption.

Coated glass

Coated glass works above all according to the principle that radiated ener-

gy is reflected outwards. The degree of radiation absorptance determines

whether the glass has to be tempered.

Tinted and coated glass

Works with both absorbing and reflecting effects. Must normally be tem-

pered.

RT

Q

i

= g value

background image

Products – SILVERSTAR I

67

4.

4.2.2.2. Application of solar control insulating glass

Protection against overheating
SILVERSTAR solar control insulating glass reflects a large part of the impinging solar energy. This
reduces the input of energy into the interiors. However, the transmission of light, i.e. of the visible
proportion of the solar radiation, is nevertheless assured to a sufficient extent.

Solar control is not the same as anti-glare protection
The primary function of a solar control system is to protect the interior against overheating by solar
radiation. Workplaces are subject to further requirements such as functional anti-glare protection.
Glare from the sun is a problem of high luminance. Even when light transmission is reduced to 20 or
30 %, the luminance in the direct field of vision is perceived as irritating. It is therefore recommended
to provide, in addition to solar control glass, anti-glare protection in the form of slats, curtains, roller
blinds or the like.

Buildings with a high proportion of glass
In buildings with a high proportion of glass, thermal comfort must be assured not only in winter
but also in summer. Both the heating demand in winter and the cooling energy demand in summer
should be kept as low as possible. Solar control glass makes a particularly valuable contribution
to saving expenditure on energy for air conditioning. The German Energy Conservation Regulation
(EnEV) contains, in addition to requirements regarding the limitation of transmission heat losses in
heated buildings through the building shell to the outside, stipulations regarding thermal insulation
during  summer.  Maximum  permissible  solar  input  factors,  which  are  calculated  according  to  the
specifications of DIN 4108-2, are intended to prevent overheating of rooms in summer and hence an
uncomfortable room climate.

Avoiding insulating glass stress
The cavity in the insulating glass is hermetically sealed. As a result, forces act on the insulating glass
unit in the event of thermal and barometric changes. These are affected by:

Installation height in m above sea level
Air pressure changes
Temperature changes
Radiation absorptance of the glass
Size of the cavity
Unequal glass thicknesses (asymmetrical structure)
Element dimensions

Due to the higher radiation absorptance, the cavity heats up more in solar control insulating glass
than in insulating glass made with clear glass. If a cavity of over 16 mm is provided, the structure of
the insulating glass should already be checked in the planning phase. Moreover, insulating glass with
small dimensions or short side lengths is exposed to greater loads than insulating glass with large
dimensions. For structural strength reasons, the panes are more rigid and cannot bend in the event
of an increase in pressure in the cavity.

background image

68

I Products – SILVERSTAR

4.

Optical measures
Optical distortions can occur as a result of the double-pane effect. To ensure that these are less
visible, it is necessary to use the thicker pane on the outside and the thinner pane on the inside. The
difference in thickness between the outer solar control glass and the inner pane should not exceed
3 mm.
The cavity should not be greater than 16 mm. The outer pane should not be below the minimum
thickness of 6 mm. A further improvement in optical quality is achieved by opting for thicker solar
control glass, e.g. 8 mm instead of 6 mm.

To temper or not to temper?
Solar control glass as a rule absorbs more heat than normal float glass or thermal insulation glass.
Partial shading can cause the pane surface to heat up to different degrees. If the temperature dif-
ference is too great, the pane will fracture. Thermal tempering is used to increase the temperature
change resistance to such an extent as to virtually rule out the risk of breakage due to thermal influ-
ences. The radiation absorptance can be used as a guideline for whether thermal tempering of the
coated pane is necessary or not. If it is more than 50 %, tempering is usually necessary.

Sample glazing
Solar control facades are aesthetically ambitious components. For large objects, it is recommended
to manufacture sample elements of the insulating glass and the balustrade glass (in the original
structure and with the actual glass thicknesses).

Colour-matched balustrades
For more information, see Chapter 4.2.6.

SILVERSTAR solar control insulating glass manufacture
SILVERSTAR solar control coatings are coated in a high vacuum in multi-chamber magnetron sput-
ter systems with a wide variety of metals. For more information, see Chapter 4.2. Modern systems
technology ensures the building physics values, the regular visual appearance of the glass and series
reproducibility.

The SILVERSTAR solar control range opens up a wealth of possibilities for facade design. Glass with
low outward reflection or with a highly reflecting outward appearance are available in different re-
flective colours. Individual wishes with regard to a colour-neutral glass view can be catered for with a
wide range of neutral glass, and without compromising on the solar control function.

background image

Products – SILVERSTAR I

69

4.

Overview of SILVERSTAR solar control insulating glass

4.2.2.3. Available range
The glass is available in the following standard dimensions:

Dimensions

Thicknesses

Lehr end size

3210 x 6000 mm

Float 4; 5; 6; 8; 10 mm

LSG 6.1; 6.2; 8.1; 8.2; 10.2 mm

Split lehr end size

2250 x 3210 mm

2550 x 3210 mm

Float 4; 5; 6; 8; 10 mm

LSG 6.1; 6.2; 8.1; 8.2; 8.4; 10.2 mm

Lehr end sizes are supplied in the size 3210 x 6000 mm. For production reasons, reduced useful
widths are possible. Certain combinations using screen printing necessitate fixed dimension coating.
This is possible on request.

The lehr end sizes are shipped in packs of 2.5 tons each. Special packs are possible on request. The
glass is arranged on the rack in such a way that the coating side faces inwards. If required, the glass
can also be reversed so that the coating side faces outwards.

Delivery is handled in complete shipments or added to other SILVERSTAR-coated glass.

Other dimensions, thicknesses and packaging methods possible on request.
Packing  details  can  be  obtained  from  the  relevant  in-house  staff.

To  protect  the  coating,

each packaging unit receives a 4 mm float glass top pane or, in the case of coated laminated safety
glass, an LSG 6.1 protection sheet.

Triple insulating glass, pane structure float 1 x 6 mm, 2 x 4 mm; 2 x cavity 12 mm argon
Solar control coating in position 2; thermal insulation coating SILVERSTAR EN2plus in positions 3 and 5.

Function

Coating types

U

g

value

g value LT value

Solar control

SILVERSTAR SUNSTOP Neutral 50 T

0.7 W/m²K 32 %

42 %

SILVERSTAR SUNSTOP Blue 50 T

0.7 W/m²K 31 %

40 %

SILVERSTAR SUNSTOP Blue 30 T

0.7 W/m²K 19 %

24 %

SILVERSTAR SUNSTOP Silver 20 T

0.7 W/m²K 14 %

17 %

background image

70

I Products – SILVERSTAR

4.

4.2.3. SILVERSTAR COMBI coatings

Two in one – twin-track strategy for solar control and thermal insulation
Coating packages can be produced with high selectivity by means of the special magnetron coating.
SILVERSTAR COMBI coatings combine good solar control with optimum thermal insulation and at the
same time ensure high light transmission.

The hallmark is excellent light transmission performance in relation to the total energy transmit-
tance. (For selectivity characteristic, see Chapter 3.4.9.)

Overview of SILVERSTAR COMBI coatings

Function

Coating types

U

g

value

g value

LT value

Solar control and

thermal insulation

triple*

SILVERSTAR SELEKT 74/42

0.7 W/m²K 39 %

67 %

SILVERSTAR SELEKT 74/42 T

0.7 W/m²K 39 %

67 %

SILVERSTAR SUPERSELEKT 60/27

0.7 W/m²K 26 %

53 %

SILVERSTAR SUPERSELEKT 60/27 T 0.7 W/m²K 26 %

53 %

SILVERSTAR SUPERSELEKT 35/14 T 0.7 W/m²K 13 %

31 %

SILVERSTAR COMBI Silver 32/21 T

0.7 W/m²K 18 %

28 %

SILVERSTAR COMBI Neutral 70/35

0.7 W/m²K 35 %

63 %

SILVERSTAR COMBI Neutral 61/32

0.7 W/m²K 31 %

55 %

SILVERSTAR COMBI Neutral 51/26

0.7 W/m²K 25 %

46 %

SILVERSTAR COMBI Neutral 41/21

0.7 W/m²K 20 %

36 %

SILVERSTAR COMBI Neutral 30/21 T 0.7 W/m²K 18 %

27 %

*Triple insulating glass, pane structure float 1 x 6 mm, 2 x 4 mm; 2 x cavity 12 mm argon
COMBI coating in position 2; thermal insulation coating SILVERSTAR EN2plus in positions 3 and 5.

SILVERSTAR combination coating
for double insulating glass in position 2

1    2              3    4

background image

Products – SILVERSTAR I

71

4.

4.2.3.1. Application of COMBI coating

Solar control and thermal insulation combined in insulating glass
SILVERSTAR COMBI is a combination coating in a coating package in position 2. The special magne-
tron coating delivers a combination of good solar control and optimum thermal insulation and at the
same time ensures high light transmission. A comfortable room climate is assured – both in summer
and in winter.

Areas of application for SILVERSTAR COMBI

Wherever good solar control together with plenty of daylight are wanted.
For new buildings and renovations.
For residential, office and public buildings.
For commercial and industrial buildings.
In large-area glass facades.

Product properties
The primary feature of SILVERSTAR COMBI is its outstanding selectivity. This is synonymous with
high performance in the ratio of light transmission to total energy transmittance.

SILVERSTAR COMBI insulating glass with combi-
nation layers yields numerous benefits. The low
U

g

value reduces the heat losses and by doing so

lowers  the  energy  consumption.  The  outstand-
ing  solar  control  properties  also  improve  cost
efficiency.  By  reflecting  solar  energy  radiation,
SILVERSTAR  COMBI  prevents  the  unwelcome
heating up of rooms, an attribute that can also
minimise cooling energy costs.

A  further  plus  point  of  combination  layers  is
comfort  in  the  room,  regardless  of  the  outside
temperatures.

SILVERSTAR COMBI coating in position 2
and thermal insulation coating in position 5

2

3 4

1

6

5

background image

72

I Products – SILVERSTAR

4.

Solar control and light transmission are optimally combined in SILVERSTAR COMBI. Thanks to maxi-
mum light transmission, plenty of daylight is admitted into the room interior. The insulating glass can
be combined with functions such as safety and sound insulation.

Dimensions
Dimensions up to max. 3210 x 6000 mm.

All SILVERSTAR COMBI glass is also available as laminated safety glass up to a maximum thickness
of 12 mm.

The lehr end sizes are shipped in packs of 2.5 tons each. Special packs are possible on request. The
glass is arranged on the rack in such a way that the coating side faces inwards. If required, the glass
can also be reversed so that the coating side faces outwards.

The fixed sizes are packaged in film with desiccant and shipped on reusable transport racks. Delivery
is handled in complete shipments or added to other SILVERSTAR-coated glass.

Other dimensions, thicknesses and packaging possible on request.

SILVERSTAR SELEKT/Bienne/Biel Vocational Business School, Switzerland

background image

Products – SILVERSTAR I

73

4.

SILVERSTAR SELEKT

Insulating glass for all seasons
SILVERSTAR SELEKT combines athermal insulation with solar control and is suitable for use as win-
dow or facade insulation with optimum coordination for a pleasant room climate in all four seasons.

Areas of application for SILVERSTAR SELEKT

SILVERSTAR SELEKT insulating glass is suitable for use in all outdoor architectural applications.
For windows and facades.
For new buildings and renovations.
For residential, commercial and industrial buildings.

Product properties
The  colour-neutral  SILVERSTAR  SELEKT  insulating  glass  combines  thermal  insulation  with  solar
control in optimum coordination for a pleasant room climate – and in all four seasons. It provides for
a balanced temperature level indoors and so for enhanced comfort. SILVERSTAR SELEKT achieves as
double insulating glass a U

g

value of 1.1 W/m²K, with a g value of 42 % and light transmission of

72 % (structure SILVERSTAR SELEKT 6 mm; cavity 16 mm argon; float 4 mm).

Colour-matched balustrade glass is available for balustrades.

Dimensions
Dimensions: made to measure up to max. 3210 x 6000 mm.

SILVERSTAR SUPERSELEKT

Selectivity-optimised solar control and thermal insulation glass
The SILVERSTAR SUPERSELEKT insulating glass provides plenty of natural daylight, but also pre-
vents overheating by solar radiation in summer. The insulating glass - thanks to its special coating
- attains high light transmission with at the same time extremely low total energy transmittance.
Moreover, the insulating glass exhibits outstanding thermal insulation, for significantly reduced heat-
ing energy costs.

background image

74

I Products – SILVERSTAR

4.

4.2.4. Combination possibilities

Solar control and sound control
SILVERSTAR  solar  control  insulating  glass  is  also  feasible  with  an  asymmetrical  structure  of
panes of unequal thickness – as double or triple insulating glass. This ensures, as well as solar
control, good sound control. The installation of EUROLAMEX laminated safety glass produces SIL-
VERSTAR solar control insulating glass with high sound insulation.

Solar control and safety
Solar control glass can as a rule meet the same safety requirements as normal glass. SILVERSTAR
solar control glass is also available as thermally tempered toughened safety glass (TSG) and as lam-
inated safety glass (LSG).

Because the safety requirements can vary greatly above all in office, administrative and industrial
buildings, it is recommended to consult the experts at EUROGLAS.

Yas Island Yacht Club, Abu Dhabi, UAE

background image

Products – SILVERSTAR I

75

4.

4.2.5. Insulation glazing

4.2.5.1. Principles, energy gain, comfort in the home

The insulating glass used today is the result of continuous further development and improvement
of the “good old window”. Large windows, window fronts and glass facades provide brightness and
quality of life.

Modern, coated multi-pane insulating glass satisfies the most exacting standards and is impressive
as a translucent building material with outstanding thermal insulation and solar control properties.
It requires a low mounting depth and achieves peak values that meet the needs and requirements of
modern-day architecture. For example, with regard to thermal insulation, solar control, sound con-
trol and fire protection, and all this together with flawless safety and high light incidence. U

g

values of

0.4 W/m

2

K and sound reduction values of around 50 dB are possible today. As well as the highest

degree  of  thermal  insulation,  energy  gains  through  passive  solar  energy  utilisation  are  possible.
Insulating glass is a well thought-out and high-performing building material that has been exhaus-
tively researched down the years.

Modern insulating glass is a glazing unit manufactured from two or more glass panes that are sep-
arated from each other around the edge by a spacer. The cavity is sealed gas-tight to the outside by
a variety of sealants and permanently connects the glass panes to each other. The all-round double
seal prevents the ingress of dust and water vapour (edge seal).
The principle of the insulating glass unit is founded on the fact that motionless air is a very poor
conductor of heat. In this way, the air cushion trapped between the panes forms a good thermal
insulation layer.

Cavity
The cavity is filled with a thermal insulation gas (argon or krypton = noble gases) or with dry air and
hermetically sealed to the outside. To prevent condensation water from forming on the cold outer
pane inside the cavity, the trapped gas or air filling must be dry. This is achieved with a hygroscopic
desiccant that is integrated into the spacer and extracts the moisture in the cavity.
When the insulating glass unit is assembled, the air pressure obtaining at the production location
prevails in the cavity.

Pane spacing
Different  values  for  the  heat  transfer  resistance  of  the  gas  or  air  layer  inside  the  cavity  are  ob-
tained depending on the pane spacing (distance between the panes). The maximum value with air is
achieved at approx. 15 mm. Here the optimum lies between heat conduction, which decreases with a
larger cavity, and convection (= movement of air, energy flow), which increases with a larger spacing,
and worsens the thermal insulation again. The optimum for argon is approx. 16 mm and for krypton
approx. 10 mm.

background image

76

I Products – SILVERSTAR

4.

Edge seal
The edge seal is intended to permanently connect the glass panes and form a vapour-tight barrier
which must prevent a post-diffusion of water vapour for many years to come.
It is also intended to compensate elastically for natural changes in the volume of air inside the cavity
due to cold and heat, and to be resistant over time to chemical influences from the atmosphere and
to light, especially UV rays.

Thermal insulation coating (SILVERSTAR)
The glass panes are finished against the cavities with translucent (light-transmitting) and heat-re-
flecting  layers.  They  are  applied  in  the  magnetron  process  and  consist  of  several  extremely  thin
metal or metal oxide layers in the nano range.

Glass rebate space/window frame
To maintain long life, the glass rebate space between the insulating glass and the window frame must
always be sufficiently ventilated so that the edge seal is not destroyed by constant moisture.

Useful life
The practical useful life of multi-pane insulating glass is, as far as is known at present, 20 to 30 years.
The useful life is exceeded when condensation water appears in the cavity.

Benefits
Aside from protection against the weather, modern insulating glass is impressive for the following
properties:

Energy loss is significantly reduced by a low U

g

value.

Brightness and quality of life thanks to high light transmission.
Solar heat gains due to advantageous total energy transmittance (g value).
Effective solar control in summer.

Comfort in the vicinity of the window.

Natural colour neutrality.
Combination with sound control, fire protection and safety possible.

Structure of double insulating glass

Float or special glass

Thermal insulation coating

Cavity with thermal insulation gas or dried air

Spacer with hygroscopic desiccant
Water-vapour-tight and ageing-resistant double seal

background image

Products – SILVERSTAR I

77

4.

Energy gain and comfort
Thermal insulation glass is a type of insulating glass that is intended to retain the heat in the room
as much as possible. The most important assessment criteria in relation to thermal insulation glass
are the heat transfer coefficient (U

g

value) and the total energy transmittance (g value).

To be able to offer effective thermal insulation,
glass must have a U

g

value that is as low as pos-

sible. The lower the U

g

value, the lower the heat

loss of the glass and hence the energy consump-
tion. The heating costs and environmental pollu-
tion are reduced accordingly.

A  good  U

g

value  also  means  higher  tempera-

tures at the pane surface on the room side. And
consequently  outstanding  comfort  in  the  room
even at very low outside temperatures.

Solar heat gains
An  additional  benefit,  i.e.  passive  solar  energy  utilisation,  can  be  obtained  with  a  high
g value. The g value specifies how much energy from the impinging solar radiation passes through
the glazing into the room. The higher the g value, the greater the energy gain – but also the more
pronounced the rate at which the room heats up. Accordingly, effective solar control is required in the
summer months.

The solar energy gains afforded by the glazing are a highly determining factor in the heating energy
balance of buildings. They are often greater than the entire ventilation heat losses and can also eas-
ily make up more than half of the remaining heating demand in residential buildings not specially
optimised. In Minergie buildings, it can even be significantly more than the remaining heating de-
mand (this would therefore be more than twice as high without solar energy gains).

With  an  appropriate  concept  and  temperature  control,  the  utilisation  factor  in  the  winter
months is particularly high in that there are hardly any situations in which the heat due to overheating
could not be used. The effective solar radiation at our latitudes is approximately 600 – 800 W/m

2

.

Thermal comfort
With conventional insulating glass cold zones can be felt in the vicinity of the window. An unpleasant-
ly cold draught manifests itself. This is not the case with SILVERSTAR thermal insulation glass. The
extraordinarily good thermal insulation eliminates unpleasant currents of air to a large extent.

background image

78

I Products – SILVERSTAR

4.

The surface temperature of the room-side window pane assimilates to a large extent to the room
temperature. Currents of cold air, which manifest themselves as draughts, do not occur in practice,
thereby increasing comfort.
The formation of condensation in the edge area of the pane is also greatly reduced.

Comfort criteria

(DIN 4108)

The temperature that is felt, taking into account the influencing factors of the room and of the person,
is the crucial factor when it comes to comfort.

Room air temperature

Surface temperatures
Movement of air
Relative room air humidity
Activity and clothing of the person

Optimum room temperature as a function of activity and clothing (EN ISO 7730)

Specific heat dis

sipation

Thermal insulation value of clothing

Example: Work clothing during sedentary activity, approx. 22 °C room temperature

0

0.1

0.2

0.3 m

2

K/W

met

3.0

2.0

1.0

W/m

2

150

100

50

0

1.0

2.0 c/o

± 1 °C

± 1.5 °C

± 2 °C

± 2.5 °C

± 3 °C

± 4 °C

± 5 °C

10 °C

12 °C

14 °C

16 °C

18 °C

20 °C

22 °C

24 °C

26 °C

28 °C

background image

Products – SILVERSTAR I

79

4.

Cold air drop: Max. U

g

values as a function of glass height

From a glass height of 1.7 m an insulating glass U

g

value of < 1.0 W/m

2

K is required.

In “passive” houses the comfort criterion is: U

g

0.8 W/m

2

K.

The temperature difference between room air temperature and surface temperature
of the room-side pane means:

Crucial to the comfort of a room is the temperature difference between the room air temperature
and the surface temperature of the adjoining wall parts. The greater the temperature differences,
the less comfortable the resident will feel. With regard to the window, the surface temperature of the
room-side pane is accordingly of interest.

Glass height h in m

1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4

1.0  1.2  1.4  1.6  1.8  2.0  2.2

2.4  2.6  2.8  3.0  3.2  3.4  3.6  3.8  4.0

U v

alue of glas

s U

g

in W/m

2

K

Example:

U

g

= 1.0 W/m

2

K (double)

Glass height max. 1.70 m

0 to 5 °C

Greatest comfort, even directly next to the window

No unpleasant draught sensation near the window

Condensation water and ice on the room-side pane possible only in

exceptional cases

Low extraneous heat demand (energy saving)

5 to 10 °C

Medium to good comfort

Slight draft sensation possible directly next to the window

Condensation water and ice on the room-side pane possible at

outside temperatures well below the freezing point

Medium extraneous heat demand

above 10 °C

Reduced comfort

Draught sensation next to the window

Condensation water and ice on the room-side pane possible

already at temperatures below the freezing point

High extraneous heat demand

background image

80

I Products – SILVERSTAR

4.

Comfort and room utilisation

4.2.5.2. Insulating glass edge seal system

Thanks to highly effective SILVERSTAR coatings, modern insulating glass has excellent thermal insu-
lation properties. Since the thermal insulation value for the entire window is crucially determined by
the insulating glass U

g

value, decisive improvements for the entire window system are achieved. In

addition, formation of condensation water on the room-side glass surface can be ruled out in practi-
cal terms even under extreme conditions.

In  the  edge  area,  the  thermal  insulation  performance  is  influenced  not  by  the  coatings,  but
primarily by the design of the so-called edge seal. In other words: in the edge area the thermal insu-
lation  is  less  effective.  The  consequence  of  this  is  lower  temperatures  on  the  inside  surface  of
the glazing. In rooms with high air humidity, condensation water may therefore form at times in the
edge area in cold winter weather.

Surface temperature at 20 °C room temperature

Glass type

U

g

value

Outside air temperature
0 °C - 5 °C

- 11 °C - 14 °C

Single-pane glass

5.8 W/m

2

K +   6 °C + 2 °C

- 2 °C

- 4 °C

Double insulating glass

3.0 W/m

2

K + 12 °C + 11 °C + 8 °C

+ 7 °C

Double insulating glass SILVERSTAR ZERO E

1.0 W/m

2

K + 18 °C + 17 °C + 16 °C + 16 °C

Triple insulating glass SILVERSTAR E-Line

0.5 W/m

2

K + 19 °C + 18 °C + 18 °C + 18 °C

View of glazed portion

Ground plan of glazed portion

Without thermal insulation

coating

Ug value e.g.

≥ 3.0 W/m

2

K

SILVERSTAR thermal

insulation coating

Ug values up to 0.4 W/m

2

K

Comfort zone

Comfort without compromises

Hot glass surface

temperature

SILVERSTAR

thermal

insulation

coating

Thermally

insulating

ACSplus

edge seal

Additional thermal insulation in the edge area by ACSplus

Room gain through
increased comfort

100 %

40 %

Cosy atmosphere near the window

background image

Products – SILVERSTAR I

81

4.

Traditionally, insulating glass was equipped with a spacer section – the section determining the spac-
ing between the two glass panes – made of aluminium. These spacers of flawless quality have proven
their worth at Glas Trösch for over fifty years. Aluminium is however a good conductor of heat and is
therefore a contributory factor in the reduced thermal insulation in the edge area.

The functions of the insulating glass edge seal

Permanent water-vapour seal / gas-tight seal
Guarantee of uniform spacing
Compatibility with the edge seal sealants
No chemical reactions in the long term
Integration of muntins must be ensured

Structure of insulating glass

Formation of condensation water in the edge area

CV = Cavity
EW = Edge width = 11.5 - 15.5 mm
SH = Section height = approx. 7 mm
SltH = Sealant height = 4 - 8 mm
BH = Butyl height = approx. 3.5 mm
BT = Butyl thickness = 0.7 mm

Dimensions, edge seal

EW

BH

BT

SH

SltH

CV

background image

82

I Products – SILVERSTAR

4.

ACS edge seal
Some  years  ago,  EUROGLAS  already  launched
onto the market with the ACS edge seal a system
that substantially improves thermal insulation in
the edge area and so satisfies the requirement
for virtual absence of condensation in the edge
zones as well.

ACSplus edge seal
ACS stands for “Anti Condensation System” and
describes the technical function. The edge seal
system provides for improved thermal insulation
and has the function of minimising appearance
of condensation in the edge area. This very func-
tion significantly improves hygiene and aesthet-
ics. But ACSplus also optimises the thermal in-
sulation of the window, helping to save valuable
heating energy.

Thanks to its unique quality, ACSplus absorbs the movements of the insulating glass and so subjects
the sealing system of the edge seal to a lesser load than conventional spacers. This is also of cru-
cial importance for the long life of the insulating glass. Installing SILVERSTAR insulating glass with
ACSPLUS seal affords benefits in every situation and so can be recommended for all types of window.

ACSplus black
(matt black)

ACSplus black cross-section

ACSplus grey
(matt grey)

ACSplus white
(matt white)

background image

Products – SILVERSTAR I

83

4.

The crucial improvement with ACSplus

Example: Double glazing (structure 4-16-4):
Wood window (U

f

= 1.3 W/m

2

K)

with SILVERSTAR insulating glass (U

g

= 1.0 W/m

2

K)

Example: Triple glazing (structure 4-12-4-12-4):
Wood window (U

f

= 1.3 W/m

2

K)

with SILVERSTAR insulating glass (U

g

= 0.7 W/m

2

K)

ACSplus = improved thermal insulation in the edge area of the insulating glass = higher surface tem-
peratures along the window frame.

-10 °C

-10 °C

20 °C

17.3 °C

7.4 °C

20  °C

17.3 °C

11.5 °C

with aluminium spacer

with ACSplus spacer

-10 °C

-10 °C

20 °C

20 °C

15.7 °C

15.7 °C

5.2 °C

9.2 °C

with aluminium spacer

with ACSplus spacer

background image

84

I Products – SILVERSTAR

4.

The essential features of ACSplus

Improved thermal insulation in the edge area
No condensation water formation in the edge area
Improvement of the window U

w

value (depending on the design between 0.1 and 0.3 W/m

2

K)

What is a heat bridge?
Weak points in the outer shell of a building are called heat bridges. They lead to an increased heat
loss and to lower surface temperatures on the room side, and so to the risk of the formation of con-
densation water and mould fungi.

The insulating glass edge seal constitutes a heat bridge of considerable length with regard to the
increasing improvement in the U

g

values of insulating glass. The U

g

value of the glass surface is thus

not achieved in the edge area of the pane.

Consequences for the window
In the window, a typical heat bridge in the edge area is created in the transition between the frame
and the glazing. The lower surface temperatures arising as a result can give rise to condensation
water at times in this area. But the heat bridge also reduces the thermal insulation of the window
as a whole.

With the heat-insulating ACSplus edge seal, the propensity to condensation water can be reduced
to a minimum and the thermal insulation of the window as an entire element can be significantly
improved.

Linear heat transfer coefficient
The linear heat transfer coefficient Ψ

g

takes into account the increased heat transfer through the

insulating glass edge seal and the glass rebate area of the frame.

The thermal significance of the spacer
The improvement of the U value for the entire window by ACSplus is dependent on the geometry of
the window. The heat transfer coefficient is calculated in accordance with

SIA 380/1.

Example: Window with aluminium spacer

Component part window

Material

U value/psi value

Window frame

Wood/metal

1.4 W/m

2

K

Glazing

Triple insulating glass

0.5 W/m

2

K

Spacer

Aluminium

0.097 W/m

U value, entire window (U

w

)

1.07 W/m

2

K

background image

Products – SILVERSTAR I

85

4.

Example: Window with ACSplus spacer

Psi value tables Ψ
To calculate the thermal value U

w

(window and glass), the linear psi value is a factor that must also

be taken into consideration. It is dependent on the type of insulating glass spacer and the type of win-
dow frame. The psi value is also influenced by whether the glass is double or triple insulating glass.

The insulating glass spacer is extremely important in the thermal calculation, particularly when the
frame makes up a large proportion of the structure.

Triple insulating glass with SILVERSTAR SELEKT and SILVERSTAR COMBI/Philip Morris International, Lausanne

Component part window

Material

U value/psi value

Window frame

Wood/metal

1.4 W/m

2

K

Glazing

SILVERSTAR E 4-4

0.5 W/m

2

K

Spacer

ACSplus

0.035 W/m

U value, entire window (U

w

)

0.84 W/m

2

K

Improvement of the window U value (U) by ACSplus

21.5 %

background image

86

I Products – SILVERSTAR

4.

4.2.5.3. Thermal insulation

Generously glazed rooms cater for modern preconceptions of comfort. In an era of respect for nature
and the environment, purely aesthetic requirements are no longer sufficient. Nowadays, much more
is demanded of modern thermal insulation glazing.
In earlier times, the window, and hence glazing, was considered to be an “energy hole”.  Since then,
efforts to improve the thermal insulation value of insulating glass have made impressive advances. A
U

g

value in double insulating glass of 1.0 W/m

2

K and in triple insulating glass of 0.6 W/m

2

K is today

standard. Glazing has therefore become a highly heat-insulating component.

Trend of U value of insulation glazing with argon fillings

Single glass: U value = 6.0 W/m

2

K

Double insul.: U value = 2.8 W/m

2

K

Triple insul. with argon filling:
U value = 2.2 W/m

2

K

Double SILVERSTAR:
U value = 1.3 W/m

2

K

Triple SILVERSTAR:
U value = 0.8 W/m

2

K

Triple SILVERSTAR:
U value = 0.7 W/m

2

K

Triple SILVERSTAR TRIII:
U value = 0.6 W/m

2

K

Triple SILVERSTAR E:
U value = 0.5 W/m

2

K

Year

1950

1960

1970

1980        1990       2000        2007       2010

6.0

5.0

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.2

U value in W/m

2

K

World record 2003:
SILVERSTAR U 02: U = 0.2 W/m

2

K

background image

Products – SILVERSTAR I

87

4.

This opens up new prospects. The process of matching the surface temperature of the glazing to the
other components eliminates the annoying phenomenon of draughts near the windows. The rooms
can be utilised to better effect. The temperatures remain more constant due to the high insulating
capacity. This makes it possible to design heating installations of smaller dimensions and to signifi-
cantly simplify their control systems.

The U value in accordance with EN 674/673
The heat transfer coefficient specifies the amount of heat that passes per unit of time through 1 m

2

of a component at a temperature difference of the adjacent room and outside air of 1 K. The smaller
the U value, the better the thermal insulation. The unit of measurement is W/m

2

K.

The U value of glazing is measured in accordance with EN 674 with the plate apparatus or calculated
in accordance with EN 673.

The U

g

value as a function of cavity and gas filling, degree of filling 90 %, calculated in accordance

with EN 673 on the example of SILVERSTAR E4 triple insulating glass (

ɛ

= 0.01).

U

g

value

Cavity with
Air

Argon

Krypton

0.4 W/m

2

K

2 x 12 mm

0.5 W/m

2

K

2 x 16 mm

2 x 10 mm

0.6 W/m

2

K

2 x 14 mm

0.7 W/m

2

K

2 x 16 mm

2 x 12 mm

0.8 W/m

2

K

2 x 14 mm

2 x 10 mm

70

60

50

40

30

20

10

1950

1960

1970

1980

2000

2007

2010

Heating oil
consumption
per m

2

glass

area per year

Litres

Year

60

28

13

8

7

6

5

background image

88

I Products – SILVERSTAR

4.

Factors that influence the U value of insulating glass

Insulating glass and U value
Energy exchange through the insulating glass is effected primarily in the form of long-wave infrared
radiation. The energy is delivered from the room air to the inner pane. This causes the room-side
pane of insulating glazing to heat up. Energy is transported from the inner pane to the outer pane
by means of conduction, convection and for the most part radiation. The outer pane in turn passes
energy by means of conduction, radiation and convection to the outside air.

In the case of conventional double insulation glazing, energy exchange occurs to the extent of

33 % by heat conduction and convection
67 % by radiation

Energy exchange in insulating glass without and with thermal insulation coating

No. and width of cavities

Filling of cavities
- Air
- Argon
- Krypton
- Mixed gases

Number of thermal insulation coatings and effectiveness
(emissivity) of the coatings

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Gesamtenergie

UV

sichtbar

Infrarot

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Wellenlänge in nm

Licht

UV

sichtbar

Infrarot

Wellenlänge in nm

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Extraterrestrische

Strahlung
λ = 200

_ 10000 nm

Atmosphäre

Globalstrahlung

Floatglas 6 mm

T: 300 K

Absorption

Sekundärstrahlung

λ = 7000 nm

Durc

hgela

ssen

e Str

ahlu

ng

λ = 3

00 _

3000

nm

576

W/m

2

λ = 30°

800

W/m

2

1353

W/m

2

T: 6000 K

Conduction

Conduction

Thermal insulation
coating

Radiation 67 %

Radiation 7 %

Convection

Convection

33 %

33 %

background image

Products – SILVERSTAR I

89

4.

The window U value designations
In the European standards, all the quantities are abbreviated on the basis of their English designa-
tions.

U

g

Glazing

U

f

Frame

U

w

Window

U

cw

Curtain Wall

The U value for glass U

g

Generally speaking, the U

g

value as the nominal value of glass can either be calculated in accordance

with EN 673 or measured in accordance with EN 674 or EN 675. For gas-filled insulating glass, the
U

g

value is determined by means of the degree of gas filling of 90 %. The details of the process are

described in the product standard EN 1279-5.

Generally speaking, the U

g

value must be speci-

fied to one place after the decimal point and used
in this form for the subsequent calculation.

To calculate the heat transfer coefficient, the fol-
lowing input variables are required:

1) Emissivity of the glass surfaces to the
cavity
2) The type of gas filling in the cavity
3) The degree of gas filling in the cavity
4) The cavity width

For today's typical thermal insulation glazing (SILVERSTAR ZERO E coating with an emissivity of 1 %
and an argon gas filling in the cavity), this produces in the case of double insulating glass with 16 mm
cavity a U

g

value of 1.0 W/m

2

K.

It makes no difference to the U

g

value on which surface in relation to the cavity the layer is applied. The

g value can vary by several %, depending on the position of the layer.

U

g

value – from 3.0 to 0.4 W/m

2

K

Just a few decades ago, building glazing was still considered to be an energy hole in that adequate
thermal insulation could not be achieved. The double glazing used in the 1950s exhibited a U

g

value

of roughly 3.0 W/m

2

K, and the first double insulating glass in 1960 attained values of around 2.8 W/

m

2

K. Today, modern insulating glass attains outstanding thermal insulation values. A U

g

value of 0.4

W/m

2

K represents the current state of the art for triple insulating glass. Glazing has therefore be-

come a highly heat-insulating component – with indisputable advantages with regard to appearance,
longevity and maintenance.

1

2 + 3

4

33 %

background image

90

I Products – SILVERSTAR

4.

Emissivity  (low-e)
The crucial variable for U value calculation is the emissivity. The emissivity serves to denote the heat
radiation of a surface in relation to a precisely defined, so-called “black body”. The lower the emissiv-
ity ε

n

of a coating, the more effective the insulating glass in terms of thermal insulation.

Silver-coated thermal insulation glass is referred to in technical parlance as “low-e glass” (low emis-
sivity = low  heat radiation).
Magnetron-coated SILVERSTAR thermal insulation glass exhibits an emissivity of 1 – 7 %. The emis-
sivity is determined by the coating manufacturer by means of measurement.

U

g

values for double insulating glass with a thermal insulation coating SILVERSTAR ZERO E

(emissivity 1 %) in accordance with EN 673

At EUROGLAS, all values are calculated in accordance with EN 673 with a 90 % gas filling.

Cavity

U

g

value

Argon, degree of filling 90 %

Air

10 mm

1.4 W/m

2

K

1.8 W/m

2

K

12 mm

1.2 W/m

2

K

1.6 W/m

2

K

14 mm

1.1 W/m

2

K

1.4 W/m

2

K

16 mm

1.0 W/m

2

K

1.3 W/m

2

K

18 mm

1.1 W/m

2

K

1.3 W/m

2

K

20 mm

1.1 W/m

2

K

1.3 W/m

2

K

Emissivity ε

n

of glass and other materials at room temperature

Black body

100 %

Masonry

94 %

Float glass

89 %

Brick

88 %

Water and ice

96 %

SILVERSTAR thermal insulation glass

1 % – 7 %

Aluminium

4 %

Copper

3 %

background image

Products – SILVERSTAR I

91

4.

The U value of the window U

w

Method for calculating the heat transfer
coefficient of the window U

w

Definitive standards for calculations:
EN 674, EN 12412-2, EN ISO 12567-1
The heat transfer coefficient U

w

of a  window

is dependent on:

the dimensions and percentages of area

(frame/glass) of the window

the heat transfer coefficient of the

glass U

g

the heat transfer coefficient of the

frame U

f

the linear heat transfer coefficient in the

transition area between glass
and frame

ψ

g

U

w

(W/m

2

K)

U

w

= Heat transfer coefficient, window

U

g

= Heat transfer coefficient, insulating glass

A

g

= Glass area

U

f

= Heat transfer coefficient, window frame

A

f

= Frame area

ψ   = Linear heat transfer coefficient, glass edge
L

g

= Glass edge length

A

w

= Total window area

Glass U

g

The U values at a window U

w

= U

f

+ U

g

Frame
U

f

Spacer ψ

Standard window size 1150 x 1550 mm outside view

Glass edge:
L

g

;

ψ

g

Frame area: A

f

; U

f

1550 mm

11

50 m

m

Glass area
A

g,

U

g

U

g

A

g

+ U

f

A

f

+ ψ

L

g

A

w

background image

92

I Products – SILVERSTAR

4.

U

w

values for standard windows

1150 x 1550 mm, frame percentage 25 % with stainless steel spacer ψ

g

= 0.06 W/m

2

K.

4.2.6. Balustrade panels

Colour-accentuated or from one casting – every wish is catered for
As well as transparent glass elements, balustrade panels are used in facades. The colour-matched
SWISSPANEL  balustrade  panel  provides  for  impressive  and  homogeneous  outward  appearances,
particularly in flush-mounted all-glass facades. But deliberate and playful use of colours can also be
achieved with SWISSPANEL.

Areas of application for SWISSPANEL

Warm and cold facades
Projecting facades (solar aprons) and exhaust air facades
For bonded facades (structural glazing)
In the roof area

Glass U

g

in W/m

2

K

Frame U

f

in W/m

2

K

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.5

2.8

2.9

2.6

2.6

2.7

2.7

2.8

2.8

2.9

2.9

3.0

3.1

2.6

2.4

2.4

2.5

2.5

2.6

2.6

2.7

2.7

2.8

2.9

2.3

2.1

2.2

2.2

2.3

2.3

2.4

2.4

2.5

2.6

2.6

2.1

2.0

2.0

2.1

2.1

2.2

2.2

2.3

2.3

2.4

2.5

2.0

1.9

2.0

2.0

2.1

2.1

2.2

2.2

2.3

2.3

2.4

1.9

1.8

1.9

1.9

2.0

2.0

2.1

2.1

2.2

2.3

2.3

1.8

1.8

1.8

1.9

1.9

2.0

2.0

2.1

2.1

2.2

2.3

1.7

1.7

1.7

1.8

1.8

1.9

1.9

2.0

2.0

2.1

2.2

1.6

1.6

1.7

1.7

1.8

1.8

1.9

1.9

2.0

2.0

2.1

1.5

1.5

1.6

1.6

1.7

1.7

1.8

1.8

1.9

2.0

2.0

1.4

1.5

1.5

1.6

1.6

1.7

1.7

1.8

1.8

1.9

2.0

1.3

1.4

1.4

1.5

1.5

1.6

1.6

1.7

1.7

1.8

1.9

1.2

1.3

1.4

1.4

1.5

1.5

1.6

1.6

1.7

1.7

1.8

1.1

1.2

1.3

1.3

1.4

1.4

1.5

1.5

1.6

1.7

1.7

1.0

1.2

1.2

1.3

1.3

1.4

1.4

1.5

1.5

1.6

1.7

0.9

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

1.5

1.6

0.8

1.0

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

1.5

0.7

0.95

1.0

1.0

1.1

1.1

1.2

1.2

1.3

1.4

1.4

0.6

0.87

0.92

0.97

1.0

1.1

1.1

1.2

1.2

1.3

1.4

0.5

0.80

0.85

0.90

0.95

1.0

1.0

1.1

1.1

1.2

1.3

Values meet requirements with regard to unheated rooms

Bold type: Very good values for windows

Values meet requirements with regard to outside climate

background image

Products – SILVERSTAR I

93

4.

Product properties
Facades  and  balustrade  panels  can,  matching
the respective thermal insulation or solar con-
trol glass, be combined in all facade structures
known today.

The back-ventilated cold facade
a) The outer facade panel of glass provides pro-
tection against the weather and performs archi-
tectural design functions.

b) The inner shell is the bearing element, pro-
tects the room, and provides thermal insulation
and sound insulation among others.

The  cavity  between  the  two  shells  must  be
back-ventilated  so  that  accumulated  moisture
and radiant heat can be dissipated.

The warm facade
Glass facade panels can be created with insula-
tion fitted at the rear and a vapour barrier on the
room  side  into  an  integrated  facade  element.
These  elements  are  a  room  protection  compo-
nent, an insulating element and an architectural
design medium rolled into one. They may not be
exposed to static loads. The thickness of the bal-
ustrade  element  is  determined  by  the  thermal
insulation requirements.

A

B

background image

94

I Products – EUROFLOAT

4.

SWISSPANEL glass structure
SWISSPANEL balustrade elements are available monolithically from TSG-H toughened safety glass
with heat-soak test, from laminated safety glass consisting of 2x HSG or as double-shell facade pan-
els (insulating glass) of TSG-H.

The  back  of  the  SWISSPANEL  balustrade  ele-
ments is provided with an opaque coating.

The  edges  of  the  SWISSPANEL  elements  are
arrissed  (ground  chamfer,  edge  surface  not
worked). Other forms of finish are possible. For
exposed  edges,  we  recommend  a  polished  or
dull-ground  version  Subsequent  finishing  such
as grinding or drilling of TSG-H is not possible.
All  finishes  such  as  holes,  flakings  or  the  like
must be applied before the tempering process.

SWISSPANEL can be combined with all solar control or thermal insulation coatings.

Colour-matched balustrade panels
The  use  of  SWISSPANEL  permits  colour  matching  or  intentional  accentuation  of  modern  glass
facades.

The  balustrade  panels  are  produced  to  match  as  much  as    possible  the  colours  of  the  individual
SILVERSTAR coatings. The term often used in the industry “harmony” presupposes that the facade
components (balustrade panels or insulating glass) have an identical shade of colour. Practice how-
ever shows that colour coordination of transparent and non-transparent areas is very much depend-
ent on the prevailing light conditions based on the time of day or weather, and consequently absolute
“harmony” is not possible.

1a

2

3

4

1b

2

3

4

TSG balustrade element

LSG balustrade element

1a  EUROGLAS TSG Flat TSG-H
1b  EUROLAMEX LSG of 2x HSG
2

Solar control layer

3

Opaque layer

4

Insulation layer

background image

Products – EUROFLOAT I

95

4.

SILVERSTAR coating and colour-matched SWISSPANEL balustrade panels

Dimensions
Maximum 1000 x 2500 mm with 6 mm TSG or 1500 x 2500 mm with 8 mm TSG.
Minimum 300 x 800 mm.
Other dimensions on request.

Insulating glass

BD panel

SILVERSTAR EN2plus/ZERO

BD 66-S

SILVERSTAR SELEKT 70/40

BD 72-S

SILVERSTAR SUPERSELEKT 60/27 T

BD 72-S

SILVERSTAR COMBI Neutral 70/35

BD 82-S

SILVERSTAR COMBI Neutral 61/32

BD 82-S

SILVERSTAR COMBI Neutral 51/26

BD 84-S

SILVERSTAR COMBI Neutral 41/21

BD 84-S

SILVERSTAR SUNSTOP Silver 20 T
SILVERSTAR SUNSTOP Blue 30 T

BD 60-S

SILVERSTAR SUNSTOP Blue 50 T

BD 62-S

SILVERSTAR SUNSTOP Neutral 50 T

BD 66-S

PEMA GmbH, Herzberg am Harz

background image

96

I Products – SILVERSTAR

4.

4.2.7. Special coatings

Thermal insulation glass with SILVERSTAR FREE VISION T coating

Clear view with no outside misting
Owing to its outstanding thermal insulation properties, modern insulating glass is prone to misting
from the outside in certain weather conditions. The intelligent SILVERSTAR FREE VISION T coating
eliminates outside misting almost entirely.

Areas of application for SILVERSTAR FREE VISION T

SILVERSTAR FREE VISION T insulating glass is used wherever outside misting is unwelcome.
Ideal for insulating glass with very low U

g

values.

For new buildings and renovations.
For residential buildings and villas.
For Minergie buildings and passive houses.
For exposed glass surfaces with high radiation.

Product properties
The outstanding thermal insulation properties of modern thermal insulation glass permit only a mi-
nimal flow of heat to pass from the inside of the room to the outside. As a result of radiation to the
cold night sky, the outer insulating glass pane can even become colder than the surroundings. This
can result in the formation of condensation water and, in the worst case, in this water freezing like
on a car windscreen. The SILVERSTAR FREE VISION T coating suppresses - to the greatest possible
extent - radiation from the outer pane to the clear night sky. As a result, the pane does not cool down
so dramatically and generally remains above the dew point of the ambient air. This eliminates the
possibility of misting. The function is long-lasting.

With SILVERSTAR FREE VISION T double or triple insulating glass, the outer pane acts permanently
as TSG.

Hotel Hof Weissbad, Switzerland

background image

Products – SILVERSTAR I

97

4.

Technical data SILVERSTAR FREE VISION T

The appearance is colour-neutral.

Dimensions
Dimensions up to max. 3210 x 6000 mm.

Double insulating glass

Triple insulating glass

Structure

SILVERSTAR FREE VISION T 4 mm /

cavity 16 mm argon /

SILVERSTAR EN2plus 4 mm

SILVERSTAR FREE VISION T 4 mm /

cavity 14 mm argon / SILVERSTAR

TRIII E 4 mm / cavity 14 mm argon /

SILVERSTAR TRIII E 4 mm

with

FREE VISION T

without

FREE VISION T

with

FREE VISION T

without

FREE VISION T

Light transmission 83 %

82 %

75 %

73 %

Light reflection

outside

9 %

12 %

15 %

18 %

Ug value

1.1 W/m²K

1.1 W/m²K

0.7 W/m²K

0.7 W/m²K

g value

64 %

64 %

63 %

64 %

SILVERSTAR
FREE VISION T
coating

SILVERSTAR
FREE VISION T
coating

SILVERSTAR
TRIII E
coating

SILVERSTAR
EN2plus
coating

TSG

TSG

background image

98

I Products – Laminated Safety Glass

4.

Prime Tower – Swiss Platform, Zurich/Photographer: Hans Ege

background image

Products – Laminated Safety Glass I

99

4.

Prime Tower – Swiss Platform, Zurich/Photographer: Hans Ege

4.3. Laminated safety glass

4.3.1. Laminated safety glass EUROLAMEX LSG

Protection and safety
For many everyday applications, it is important that glass panes retain their intended protective ef-
fect if they are accidentally or even intentionally damaged. EUROLAMEX LSG consists of two or more
glass panes that are permanently connected with highly tear-resistant, tough-elastic intermediate
layers of polyvinyl butyral film (PVB). In the event of overload due to shock or impact, the glass does
break, but the fragments adhere to the undamaged PVB layer. In this way the damaged glass has a
residual stability and the glazed opening remains closed. The risk of injury is also reduced due to the
fact that the shards are retained on the film.

Areas of application for EUROLAMEX LSG
In  school  buildings  and  child  care  centres  as  room-dividing  glazing,  to  prevent  injury  by  glass
shards and as fall protection elements.
For overhead and roof glazing in private and public applications.
In interior finishing and in outdoor areas as privacy screening or to achieve optical effects with
colours in special printing process as design glass.
As single glazing in doors, stairway landings, stairway railings and balcony glazing.
In combination with insulating glass as anti-burglar protection for windows.
In public applications as fall or fall-through protection glazing for windows, doors and shop/display
windows.
As breakout-resistant and penetration-resistant glazing in prisons and nursing homes.
As  bullet-proof  glass  for  cash  desks  and  counter  systems  in  banks,  post  offices  and  similar
applications.
As glazing for animal cages or zoo aquariums.
As balustrade elements for all-glass facades such as structural glazing.
For industrial and military installations as explosion-resistant glazing and for vehicles, aircraft
and ships.

Product guidelines and important facts
EUROLAMEX LSG is a laminated safety glass in accordance with EN 12543.

LSG consists of two or more glass pane with highly tear-resistant, tough-elastic intermediate layers
of PVB film. The structure and thickness of the elements are based on the demands made of the
glass solution. By combining different glass and film layers it is possible to achieve with EUROLAMEX
LSG  safety  features  such  as  resistance  to  thrown  objects,  penetration  (in  acc.  with  EN  356)  and
bullets (in acc. with EN 1063) as well as fall and fall-through resistance and walk-on capability.

background image

100

I Products – Laminated Safety Glass

4.

EUROLAMEX LSG manufacture and finishing
After  the  pane  surfaces  have  been  cleaned,  the  glass  sheets  and  PVB  film  are  placed  on  top
of  each  other,  heated  and  pressed  together  by  rollers  or  by  a  vacuum  into  the  pre-lamination.
The  elements  are  then  passed  to  the  autoclave,  where  they  are  firmly  bonded  together  under
pressure and heat. Edge finishing is performed after the manufacturing process. If LSG or HSG is
fashioned into LSG, edge finishing cannot be performed at a later stage.

1.

2.

3.                  4.

5.

6.

Manufacturing stage

Description

1. Loading

The system is loaded by gantry stacker.

2. Cleaning

The glass is cleaned in the washing machine. The glass thickness is au-

tomatically measured, then the machine parameters are automatically

set.

3. Laminating room

Glass-film-glass is joined in accordance with the sandwich principle in

this room. Since the PVB film is very sensitive to temperature and mois-

ture, and every speck of dust can impair the optical quality, the lamina-

ting room is an air-conditioned clean room. For this reason too, the film

is stored specifically for each product in air-conditioned rooms.

4. Pre-lamination

The so-called pre-lamination is made in the pre-lamination furnace from

the glass sheets and the film in between. To do so, the glass sheets are

heated to a defined temperature and pressed together by rollers.

5. Autoclave

The glass panes are permanently joined to the film under pressure and

temperature in the autoclave. The finished LSG sheet is thus fashioned

from the pre-lamination.

6. Unloading/delivery

After autoclaving, further processing such as grinding or drilling in the

glass can be performed.

background image

Products – Laminated Safety Glass I

101

4.

Vacuum process for production of LSG
Beside traditional LSG production with pre-lam-
ination by means of rollers and autoclave, there
is a further process in which the pieces of glass
are  vacuumed  both  in  a  pre-lamination  (with-
out rollers) and in an actual bonding process in
an  enclosed  bag-like  container.  This  process  is
much more complicated and is used in the build-
ing industry for special glass structures, and pri-
marily for curved glass.

Product properties
The structure of EUROLAMEX LSG elements and
the thickness are based on the safety demands
placed on the glazing. Thrown-object / penetra-
tion-resistant glass can be adapted to the respec-
tive safety requirements by the number of glass
layers and the thickness of the PVB film in be-
tween. EUROLAMEX LSG is resistant to light and
ageing.  The  edges  of  the  LSG  sheets  must  be
protected against acid and alkaline solutions and
against permanently wet conditions so that the
film is not compromised.

The intermediate layers of PVB film can be clear or tinted, and on request also UV-permeable or
sound-reducing or combined with special functions such as shading elements.

Laminating room

Autoclave

Glass

Glass

PVB film

Key to the designation
EUROLAMEX LSG 8.2
8 =   Element thickness (mm) consisting of

2x float glass 4 mm

2 =  Number of films at 0.38 mm

background image

102

I Products – Laminated Safety Glass

4.

When clear film and clear glass is used, translucence is not compromised, exhibiting roughly the
same values as single glass of the same thickness.

Unlike  TSG,  EUROLAMEX  LSG  when  damaged
does not shatter into small pieces, but retains its
intended  effect.  The  fracture  pattern  of  EURO-
LAMEX LSG shows its shard-retaining capability:
It resembles a spider's web which, depending on
the severity of the impact, exhibits a narrower or
wider mesh structure.

Technical data of EUROLAMEX LSG
EUROLAMEX LSG exhibits the same temperature change resistance and roughly the same tensile
bending stress as normal float glass. To increase these values, TSG, TSG-H and HSG can be used
instead of float glass in the assembly of EUROLAMEX LSG. EUROLAMEX LSG can be provided with a
SILVERSTAR thermal insulation layer and assembled into insulating glass. When worked into insu-
lating glass, EUROLAMEX LSG delivers not only the desired degree of safety, but also improved sound
reduction. Special LSG film is available to improve the static properties, particularly the laminated
effect and residual stability after fracture.

Dimensions
The maximum production size of EUROLAMEX LSG is 3210 x 8500 mm. The production size is how-
ever dependent on the structure of the laminated safety glass and its application.

Available range

Special dimensions and further structures on request.
* When used in overhead applications the glazing must always be linear-mounted.
The maximum dimensions are 1250 x 2500 mm.

EUROLAMEX LSG fracture pattern:

shard-retaining property thanks to PVB film

Structure

Film type

Maximum

Dimensions

4.2 / 4.4 / 6.1 / 6.4 / 8.1  / 8.4 / 10.1 / 10.4 / 12.1 / 12.4 / 16.1 /

16.4 / 20.1 / 20.4

Clear, matt

3210 x 8000 mm

6.1 / 6.2 / 8.1 / 8.2 / 10.1 / 10.2 / 12.1 / 12.2 / 16.1 / 16.2 /

20.1 / 20.2

Sound

control*

3210 x 8000 mm

background image

Products – Laminated Safety Glass I

103

4.

Stairwell design with tinted laminated safety glass

background image

104

I Products – Laminated Safety Glass

4.

4.3.2. Protection and safety with glass

Glass is one of the most interesting and popular building materials. It can be used in a huge variety
of applications. As with any other material, building with glass calls for some fundamental safety
considerations. This aspect is sufficiently taken into consideration thanks to the continuous further
development of glass technology. However, safety with glass must be planned and this requires me-
ticulous clarification, depending on the task for which the glazing is intended.
Serious safety planning always starts with an agreement on utilisation that defines the safety re-
quirements with regard to the various types of glazing.

The following laws, standards and recommendations in particular must be taken into consideration (not
exhaustive)

DIN  18299:  German  construction  contract  procedures  (VOB)  –  Part  C:  General  technical  spec-

ifications for construction contracts (ATV) – General rules applying to all types of construction
work

DIN 18360: German construction contract procedures (VOB) – Part C: General technical specifica-

tions for construction contracts (ATV) – Metalwork

EN  12978:  Industrial,  commercial  and  garage  doors  and  gates  –  Safety  devices  for  power

operated doors and gates – Requirements and test methods

EN 1627: Pedestrian doorsets, windows, curtain walling, grilles and shutters – Burglar resist-

ance – Requirements and classification

EN 1628: Pedestrian doorsets, windows, curtain walling, grilles and shutters – Burglar resist-

ance – Requirements and classification

EN 1990: Basis of structural design
EN  1991-1-1:  Actions  on  structures  –  Part  1-1:  General  actions  –  Densities,  self-weight,  im-

posed loads for buildings

TRLV: Technical rules for the use of linear supported glazing
TRPV: Technical rules for the design and execution of glazing with punctiform supports
TRAV: Technical rules for the use of fall-proof glazing

4.3.2.1. Passive and active safety

In practice a distinction is made between passive and active safety; different types of glass are gen-
erally used accordingly. However, glazing often has to assume both passive and active safety func-
tions.

Passive safety
Passive safety involves providing projection against injury by the glazing itself. The glazing concerned
is injury-reducing, e.g. doors, balustrades, table tops, partition walls, vestibules, stairwell, overhead
and floor glazing (walk-on safety in this case), etc.

Typical properties that must be exhibited by such glazing:

Injury-reducing e.g. by crumbling when shattered (TSG) or by shard retention (LSG)
Shard-retaining (LSG in the overhead area)
Fall-preventing (Glazing with balustrade function)

background image

Products – Laminated Safety Glass I

105

4.

Active safety
Active safety involves protection by the glazing against an external attack, by so-called attack-resist-
ant glass. They are intended to provide protection against:

Thrown objects (e.g. attack with a stone)
Break-in, break-out and penetration
Attack with firearms
Explosion pressure

It is possible to choose from different products and designs to suit the area of application and the
safety requirement. The choice is made on the basis of standards and regulations. If these are not
provided,  the  safety  need  must  be  clarified  meticulously  and  with  absolute  precision  before  the
product is chosen. “One size fits all” solutions rarely deliver successful results, since safety too is
perceived individually. An extensive product range permits customised solutions which cover every
safety need.

Passive safety

Injury-reducing
Shard-retaining
Fall-preventing
Resistant to ball impact

Active safety (attack resistance)

Thrown-object-resistant
Penetration-resistant
Bullet-resistant
Explosion-pressure-resistant

Business Center Andreaspark, Zurich/Photographer: Hans Ege

background image

106

I Products – Laminated Safety Glass

4.

4.3.2.2. Glass with safety properties

There are only two types of glass with safety properties

Toughened safety glass (TSG, also TSG-H)
Laminated safety glass (LSG) (for more information, see Chapter 4.3)

TSG (3–8 mm)

Thermally tempered
Increases temperature change resitance
Increases mechanical load capability
Injury-reducing (crumbling when

shattered)

Resistant to ball impact

LSG

Injury-reducing
Shard-retaining
Thrown-object-resistant
Fall-preventing
Resistant to ball impact

LSG

Penetration-resistant
Fall-preventing

LSG

Bullet-resistant

Float glass/
ornamental
glass

Fracturing can create dangerous and sharp-edged fragments. The relevant safety
properties are produced only by tempering into TSG or by assembling into LSG.

Heat-
strengthened
glass (HSG)

HSG has a higher mechanical strength and a higher temperature change resis-
tance than float glass. Fracturing can however create dangerous fragments.

Wired and
wired plate
glass

Wired glass is a rolled flat glass with a wire-mesh insert embedded inside it. On
fracturing, the wire mesh holds the fragments together up to a certain load. In the
overhead area, it can offer limited protection against falling glass pieces. Howe-
ver, serious injuries can be incurred with wired or wired plate glass particularly in
doors, partition walls, balustrades, etc. Furthermore, wired and wired plate glass
has only very limited structural and thermal load capability.

The following glass types are not safety glass since they do not exhibit appropriate safety properties;
specifically, they are not injury-reducing.

background image

Products – Laminated Safety Glass I

107

4.

4.3.2.3. Passive safety in practice

4.3.2.3.1. Balustrade glazing
Balustrade glazing used in stairway and grandstand, balcony or facade applications must meet spe-
cific safety requirements. In particular, they should prevent anyone from injuring themselves or fall-
ing. Glazing in the balustrade area requires particular attention.

Example of injury-reducing/fall-preventing room-height facade glazing in two variants.
Variant on left:  outside float 8 mm / inside LSG 16 mm (injury-reducing and fall-preventing)
Variant on right: outside LSG 16 mm (fall-preventing) / inside TSG 8 mm (injury-reducing)

Glazing in the balustrade area       Special

safety glazing required

Upper floor: injury-reducing and fall-

preventing glazing required

Ground floor: injury-reducing glazing

required

Glazing above balustrade area of
1.00 m       No special measures required
for the time being

1.00 m

1.00 m

1.00 m

1.00 m

Out

er

Out

er

Inner

Inner

Cristal Shopping Mall, Martigny, Switzerland

background image

108

I Products – Laminated Safety Glass

4.

For  structural  verification  of  fall  prevention,  a  knife-edge  load  in  accordance  with  EN  1991-1-1
“Actions on structures”, see “Barriers”, is taken as the basis. For residential, office and selling spac-
es, the characteristic value is 0.8 kN/m. Depending on the type of use and strain to be anticipated
(e.g. due to jostling crowds) this can be up to 3.0 kN/m.

4.3.2.3.2. Sloping, roof and overhead glazing

Sloping, roof or overhead glazing refers to single or insulating glazing that is installed with an incli-
nation of more than 10° from the vertical.

As well as being sufficiently dimensioned,

which results from a variety of factors, it is essential from

a safety standpoint in the case of sloping glazing that in the event of the glass fracturing, individual
glass pieces or even entire glass elements cannot fall and injure people.

10°

Hotel Hof Weissbad, Switzerland

background image

Products – Laminated Safety Glass I

109

4.

Overhead glazing must therefore always have LSG made of float glass or heat-strengthened glass
as its innermost glass. LSG consisting of 2 TSG panes is not permitted, since this combination does
not exhibit sufficient residual stability after fracture and is therefore prone to the risk of complete
elements falling down.

Possible structures of overhead glazing

Single glazing

LSG made of float glass
LSG made of HSG

Insulating glazing

Glass outer

TSG-H
HSG
Float glass
LSG

Glass inner

LSG made of float glass
LSG made of HSG

Single glazing

Insulating glazing

background image

110

I Products – Laminated Safety Glass

4.

Caution in the event of larger spans!
LSG can – up to a span of 1500 mm – usually furnish its intended properties (preventing individual
glass pieces or whole elements from falling down after fracture). For greater spans, additional meas-
ures to prevent entire elements from falling must be provided. For elements that are only supported
on two sides, this already applies from a span of 1200 mm.

Special measures (examples)

LSG as a triple structure
Increase support surfaces
Design measures to prevent falling (e.g. nets or cross-struts, etc.)

4.3.2.3.3. Glass floors

Glass floors are subject to the same safety considerations as sloping glazing. However, non-slip safe-
ty must also be taken into consideration.

Support

Span

Structure

2-sided

Up to 1200 mm

LSG made of 2 x float glass
LSG made of 2 x HSG

>1200 mm

Special measures required to
prevent entire elements from
falling

4-sided

Up to 1500 mm

LSG made of 2 x float glass
LSG made of 2 x HSG

>1500 mm

Special measures required to
prevent entire elements from
falling

background image

Products – Laminated Safety Glass I

111

4.

4.3.2.3.4. Glazing in sports facilities

Gymnasiums and sports halls generally require safety and resistance to ball impact as well as injury
reduction. This can be ensured both with toughened safety glass (TSG) and with laminated safety
glass (LSG).

Safety and resistance to ball impact (for glazing installed on four sides)

4.3.2.3.5. Structural use of glass

The  structural  use  of  glass  calls  for  comprehensive  considerations  regarding  the  issue  of  safety.
The consideration “What happens when glass breaks?”  (is there a risk of injury by glass pieces, can
somebody fall, is there sufficient residual stability to prevent entire elements or supporting struc-
tures from collapsing?) that should always be made whenever glass is used is particularly important
in the case of glass that assumes structural functions, and cannot under any circumstances by re-
placed by a so-called “static overdimensioning”.

Glass type

Max. dimensions

EUROGLAS TSG Flat 6 mm

2000 x 3000 mm

EUROLAMEX LSG 8.1

2250 x 4200 mm

For larger dimensions, appropriately thicker glass must be used.

Underground station, Nuremberg, Photographer: Gerhard Hagen/poolima

background image

112

I Products – Laminated Safety Glass

4.

Fracture pattern

Glass types

Windows with

balustrades

Railings

Glass balus-
trades/glass

facades

Float glass/

cast glass

Suitable

Windows with

balustrades

in acc. with

EN 1627/1628

Unsuitable

Not permitted

Unsuitable

Wired glass

Unsuitable

Unsuitable

Unsuitable

Toughened safety

glass (TSG)
EUROGLAS

TSG Flat

Suitable

Suitable

Additional

fall prevention

in acc. with

EN 1627/1628

Suitable

Additional

fall prevention

in acc. with

EN 1627/1628

Heat-strengthened

glass (HSG)
EUROGLAS

TSG Flat

Suitable

Unsuitable

Only as LSG

with HSG

Unsuitable

Only as LSG

with HSG

Laminated safety

glass (LSG)

EUROLAMEX

made of float glass/

cast glass

Suitable

Suitable

Without

punctiform

mounting

Suitable

Without

punctiform

mounting

Laminated safety

glass (LSG)

EUROLAMEX

made of toughened

safety glass

Suitable

Suitable

If 4-sided

in the frame

Suitable

If 4-sided

in the frame

Laminated safety

glass (LSG)

EUROLAMEX

made of heat-strength-

ened glass (HSG)

Suitable

Suitable

Particularly

with punctiform

mounting

Suitable

Particularly

with punctiform

mounting

4.3.2.3.6. Passive safety – application recommendations

background image

Products – Laminated Safety Glass I

113

4.

Glass doors

All-glass

systems/glass
partition walls

Glass roofs

Stairways/

walk-on

glazing

Sports facility

glazing

Unsuitable

Unsuitable

Unsuitable

Unsuitable

Unsuitable

Unsuitable

Unsuitable

Suitable

Panes all-round
inside the frame

Span small

side < 600 mm

Unsuitable

Unsuitable

Suitable

Suitable

Use if there is no

danger of falling;

make glass visible

Suitable

Only for IV glass;

upper pane TSG;

lower pane in LSG

shard-retaining

Unsuitable

Suitable

TGS is resistant to

ball impact;

Use if there is no

danger of falling

Unsuitable

Only as LSG

with HSG

Unsuitable

Only as LSG

with HSG

Unsuitable

Only as LSG

with HSG

Unsuitable

Only as LSG

with HSG

Unsuitable

Only as LSG

with HSG

Suitable

Suitable

Necessary if there is

a danger of falling;
make glass visible;

without punctiform

mounting

Suitable

Overhead glazing

shard-retaining

Suitable

Ensure

slip resistance

Suitable

Suitable

Suitable

If there is no danger

of falling; make

glass visible; parti-
cularly with puncti-

form mounting

Unsuitable

Unsuitable

Suitable

If there is no danger

of falling; make

glass  visible; parti-

cularly with puncti-

form mounting

Suitable

Suitable

Necessary if there is

a danger of falling;
make glass visible;

particularly with

punctiform mounting

Suitable

Overhead glazing

shard-retaining;
particularly with

punctiform mounting

Suitable

Choose pane with

high section modulus

and slip-resistant;

protect support pane

Suitable

Necessary if there is

a danger of falling;
make glass visible;

particularly with

punctiform mounting

background image

114

I Products – Laminated Safety Glass

4.

4.3.2.4. Active safety in practice

For the most part, glass tested in accordance with the relevant standards is used in practice as at-
tack-resistant glazing (active safety).

Thrown-object-resistant and penetration-resistant glazing
This is standardised glazing in accordance with EN 356, classified into the categories P1A to P5A
(thrown-object-resistant glazing) and P6B to P8B (penetration-resistant glazing).

Classification in acc. with EN 356

Optimum attack resistance can only be achieved when the window frame too offers appropriate safe-
ty. Particularly during break-in attempts, it is often the case that the perpetrator does not actually
break  the  glazing,  but  instead  tries  to  forcibly  open  the  window  casement.  EN  1627  governs  the
window frame requirements in the resistance categories WK 1 – WK 6 and assigns the appropriate
glazing categories.

Insulating  glass  is  governed  by  the  principle  that  glass  must  exhibit  the  required  classification.
Frame categories are not assigned to the glazing categories P1A and P2A, i.e. this glazing does offer
a certain degree of safety, but does not conform to any standardised window resistance category.
However, glazing of this type is often installed in detached family houses and generally offers ade-
quate protection against simple break-in attempts.

Resistance

category

Drop height

No. of drop tests

with steel balls

weighing 4110 g

Number of blows

with hammer/

axe with plastic

handle

Resistance to

attack

Glass structure

P1A

1500 mm

3

Thrown-object-

resistant

LSG double

P2A

3000 mm

3

P3A

6000 mm

3

P4A

9000 mm

3

P5A

9000 mm

3 x 3 = 9

P6B

31 – 50

Penetration-

resistant

LSG multiple

structure

P7B

51 – 70

P8B

over 70

background image

Products – Laminated Safety Glass I

115

4.

4.3.2.5. Safety properties of glass

The  matrix  below  provides  an  overview  of  the  most  important  types  of  glass  used  in  building  to-
gether with their relevant safety properties and the temperature change resistance. The properties
“thrown-object- and penetration-resistant” are combined as “burglar-resistant” as glass of this type
is usually used to prevent break-ins. The property “bullet-resistant” is not listed as specially struc-
tured laminated safety glass is required for this purpose.

Suitable, * Observe structure/thickness, ** Only when held on 4 sides in the frame, *** Only under certain conditions

Vocational Business School, Bienne/Biel, Switzerland

Glass type

In

ju

ry

-r

ed

uc

in

g

Sh

ar

d-

re

ta

in

in

g

R

es

is

ta

nt t

o b

al

l i

m

pa

ct

B

ur

gl

ar

-r

esi

st

an

t

Fa

ll-

pr

eve

nt

ing

R

es

id

ua

l l

oa

d-

be

ar

in

g

ca

pa

ci

ty a

ft

er f

ra

ct

ur

e

In

cr

ea

se

d r

es

is

ta

nc

e t

o

tem

per

atu

re

c

han

ge

Float glass / cast glass

Wired / wired plate glass

TSG

*

HSG

LSG made of float / cast glass

*

*

*

LSG made of TSG

*

**

LSG made of HSG

*

***

*

background image

116

I Products – Laminated Safety Glass

4.

EUROLAMEX matt

6.2

33 dB

EUROLAMEX matt

8.2

35 dB

EUROLAMEX matt

10.2

36 dB

EUROLAMEX matt

12.2

38 dB

4.3.3. EUROLAMEX S PHON – Sound-insulating glass

Laminated safety glass with integrated sound control achieves, thanks to its special sound-insulating
film, an average improvement in the weighted sound reduction index R

w

of 3 dB. EUROLAMEX S PHON

can be processed like conventional laminated safety glass because it retains all the safety properties
of conventional LSG. It can be used as single glazing for interiors and as insulating glass.

Monolithic LSG structures

Sound control film

Matt film

Product designation

Structure

Sound reduction index R

w

EUROLAMEX S PHON

6.2

35 dB

EUROLAMEX S PHON

8.2

37 dB

EUROLAMEX S PHON

10.1

38 dB

EUROLAMEX S PHON

10.2

38 dB

EUROLAMEX S PHON

12.2

40 dB

EUROLAMEX S PHON

16.2

41 dB

EUROLAMEX S PHON

20.2

42 dB

*Not insulating glass

100

160

250

400

630

1000

1600

2500

4000

50

45

40

35

30

25

20

Sound reduction index (dB)

Frequency (Hz)

8.2 Standard LSG*

8.2 EUROLAMEX S PHON*

background image

Products – Laminated Safety Glass I

117

4.

background image

118

I Products – Laminated Safety Glass

4.

Type

mm

2000

2250

2550

6000

6000

Glass  Film

Sheet t

Sheet t

Sheet t

Sheet t

Sheet t

6.1

6

0.38

20

1.98

20

2.23

20

2.52

9

2.67

18

5.35

6.2

6

0.76

19

1.93

19

2.17

19

2.46

9

2.75

18

5.49

6.3

6

1.14

18

1.88

18

2.11

18

2.39

9

2.82

18

5.63

6.4

6

1.52

18

1.93

18

2.17

18

2.46

9

2.89

18

5.78

8.1

8

0.38

15

1.97

15

2.21

15

2.51

7

2.75

14

5.51

8.2

8

0.76

15

2.01

15

2.26

15

2.56

7

2.81

14

5.62

8.3

8

1.14

14

1.91

14

2.15

14

2.44

7

2.87

14

5.73

8.4

8

0.52

13

1.81

13

2.03

13

2.31

7

2.92

14

5.84

10.1

10

0.38

12

1.96

12

2.20

12

2.50

5

2.45

10

4.90

10.2

10

0.76

12

1.99

12

2.24

12

2.54

5

2.49

10

4.98

10.3

10

1.14

11

1.85

11

2.09

11

2.36

5

2.53

10

5.06

10.4

10

1.52

11

1.88

11

2.12

11

2.40

5

2.57

10

5.14

12.1

12

1.38

10

1.95

10

2.20

10

2.49

4

2.34

8

4.69

12.2

12

0.76

10

1.98

10

2.23

10

2.52

4

2.38

8

4.75

12.3

12

1.14

9

1.81

9

2.03

9

2.30

4

2.41

8

4.82

12.4

12

1.52

9

1.83

9

2.06

9

2.33

4

2.44

8

4.88

16.1

16

0.38

8

2.08

8

2.34

8

2.65

3

2.34

6

4.67

16.2

16

0.76

8

2.10

8

2.36

8

2.67

3

2.36

6

4.72

16.3

16

1.14

8

2.12

8

2.38

8

2.70

3

2.38

6

4.77

16.4

16

1.52

8

2.14

8

2.41

8

2.73

3

2.41

6

4.82

20.1

20

0.38

6

1.94

6

2.18

6

2.48

2

1.94

4

3.88

20.2

20

0.76

6

1.96

6

2.20

6

2.50

2

1.96

4

3.92

20.3

20

1.14

6

1.97

6

2.22

6

2.52

2

1.97

4

3.95

20.4

20

1.52

6

1.99

6

2.24

6

2.54

2

1.99

4

3.98

4.3.4. Packing

background image

Products – Laminated Safety Glass I

119

4.

Stability tests
Two test methods are used to test the safety of LSG:

Ball drop test
The ball drop test is used to determine the stability of LSG. All panes must be able to withstand being
hit three times by a steel ball weighing approx. 4 kg. The drop heights in the individual categories are
defined in the following table:

Ball drop test in acc. with EN 356

Category

Drop height

P1A

1500 mm

P2A

3000 mm

P3A

6000 mm

P4A

9000 mm

P5A

3 x 9000 mm

Pendulum impact
The  pendulum  impact  test  is  used  to  simulate
the impact load and the resulting fracture beha-
viour of LSG. A distinction is made between three
types of fracture behaviour:

Category

Drop height

3

190 mm

2

450 mm

1

1200 mm

LSG fracture

background image

120

I Products – Laminated Safety Glass

4.

Tested laminated safety glass

EUROLAMEX matt

EUROLAMEX

EUROLAMEX S Phon

Construction key for the designation: EUROLAMEX 6.1 (6 = element thickness in mm, consisting of
2 x 3 mm float glass, 1 = number of films at 0.38 mm). Further thicknesses and special structures
on enquiry. Max. dimensions 3210 x 8000 mm.

EUROLAMEX – resistance to ball impact in acc. with DIN 18032-3

Product

Ball drop test EN 356

Pendulum impact EN 12600

EUROLAMEX 4.2

P2A

Category 1

EUROLAMEX 4.4

P2A

Category 1

EUROLAMEX 6.1

P1A

Category 2

EUROLAMEX 6.2

P2A

Category 1

EUROLAMEX 6.4

P4A

Category 1

EUROLAMEX 8.1

-

-

EUROLAMEX 8.2

P2A

Category 1

EUROLAMEX 8.4

P4A

Category 1

EUROLAMEX 8.6

P5A

-

EUROLAMEX 12.8

P6B

-

Product

Ball drop test EN 356

Pendulum impact EN 12600

EUROLAMEX S PHON 6.2

P2A

1B1

EUROLAMEX S PHON 8.1

P1A

1B1

EUROLAMEX S PHON 8.2

P2A

1B1

EUROLAMEX S PHON 8.4

P4A

1B1

EUROLAMEX S PHON 12.2

P2A

1B1

Product

Max. pane size

EUROLAMEX 6.2

2250 x 4200 mm

EUROLAMEX 8.1

2250 x 4200 mm

EUROLAMEX 8.2

2250 x 4200 mm

Product

Ball drop test EN 356

Pendulum impact EN 12600

EUROLAMEX matt 6.2

P2A

EUROLAMEX matt 8.2

P2A

EUROLAMEX matt 10.2

P2A

EUROLAMEX matt 12.2

P2A

background image

Products – Laminated Safety Glass I

121

4.

4.3.5. Sound control

Our environment is getting ever louder, with private and public transport constantly increasing. No-
body is safe from excessive noise. Even quiet places today can be exposed to heavy noise tomorrow.
But: what is excessive noise? Excessive noise is defined as any type of sound which is felt to be of-
fending, annoying or painful. Ambient noise consists of a multitude of tones of differing frequency and
intensity. Specific perception by the human ear is taken into account in the determination of excessive
noise intensity. Higher pitched tones are subjectively felt to be louder than lower pitched ones. The
loudest tone a human can hear without pain has a sound intensity ten billion times greater than the
quietest tone. The human ear copes with this by perceiving a tenfold increase in sound intensity as a
doubling of the loudness. Dealing with such large figures is not very practical, and for that reason a
logarithmic scale is used. The unit is the decibel (dB), derived from the bel (B) (1 bel = 10 decibels), a
non-dimensional proportional number that corresponds to the decadic logarithm.

Frankfurt Airport, Frankfurt am Main

background image

122

I Products – Laminated Safety Glass

4.

Sound intensities
Examples of the relationship of linear and logarithmic values

In linear
units

In powers
of 10

Decadic
logarithm

In bels (B)

In decibels (dB)

1*

10

0

0

0

0

10

10

1

1

1

10

100

10

2

2

2

20

1000

10

3

3

3

30

5000

10

3.7

3.7

3.7

37

10000

10

4

4

4

40

*Hearing threshold

Landhaus Schaffhausen/Architect: hofer.kick architekten/Photographer: © foto-panorama.ch

background image

Products – Laminated Safety Glass I

123

4.

4.3.5.1. Noise sources and perception

The diagram below sets out some typical types of noise with their loudness (in decibels) and subjec-
tive perception.

130 dB

120 dB

110 dB

100 dB

90 dB

80 dB

70 dB

60 dB

50 dB

40 dB

30 dB

20 dB

10 dB

0 dB

Pain

threshold

Mean range

of audibility

Hearing

threshold

Office noise

Road traffic

Loud radio music

Loud factory floor

Pneumatic hammer

Rock concert

Aeroplane

(50 m away)

Sil

ent

Almos

t inaudibl

e

Bar

el

y audibl

e

Very quiet

Quiet

Mor

e quiet

Moder

at

el

y l

oud

Loud

Very l

oud

Very l

oud

Extr

emel

y l

oud

Int

ol

er

abl

e

Int

ol

er

abl

e

Painful

Rustling

paper

Ticking

clock

Quiet garden

Normal

conversation

TV programme

background image

124

I Products – Laminated Safety Glass

4.

4.3.5.2. Measurement curves and their meaning

4.3.5.2.1. Test procedure
The testing of sound insulation glass is precisely standardised. The sound reduction index for the
individual  frequencies  of  50  –  5000  hertz  is  measured  at  third  intervals.  The  values  obtained  are
entered into a system of coordinates and connected to each other. The curve produced in this way is
used to make a reference curve congruent according to precisely defined rules. The value exhibited
by the displaced reference curve at 500 hertz corresponds to the weighted sound reduction index R