RD2-series, Überblick




background image

Precision Reduction Gear R

V

TM

High-speed gearhead  RD2 SERIES

Precision Reduction Gear RV

TM

Precision Gearhead

R D 2   S e r i e s

®

● Nabtesco, VIGOGREASE, RV are registered trademarks or trademarks of Nabtesco Corporation.
● Specifications are subject to change without notice.
● The PDF data of this catalog can be downloaded from the following website.
http://precision.nabtesco.com/
If any addition or modification is made to the published information, the PDF data may be updated before the printed catalog.
Due to this, please note that some contents of the PDF data may be changed or revised from those in this catalog.
● Unauthorized reprinting, reproduction, copying, or translation of this catalog in whole or in part is strictly prohibited.

CAT.150330

(Issued on March 30, 2015)

Rev. 006

Europe and Africa

North and South America

China

Asia and others

Nabtesco Precision Europe GmbH

Tiefenbroicher Weg 15, 40472 Düesseldorf, Germany
TEL: +49-211-173790  FAX: +49-211-364677
E-MAIL: info@nabtesco.de   www.nabtesco.de

Nabtesco Motion Control Inc. in U.S.A (North America & South America)

23976 Freeway Park Drive, Farmington Hills, MI 48335, USA
TEL: +1-248-553-3020  FAX: +1-248-553-3070
E-MAIL: engineer@nabtescomotioncontrol.com   www.nabtescomotioncontrol.com

Shanghai Nabtesco Motion-equipment Co., Ltd.

Room 1706, Hong Jia Tower, No. 388 Fu Shan Road, Pudong New Area, Shanghai 200122, China
TEL: +86-21-3363-2200  FAX: +86-21-3363-2655
E-MAIL: info@nabtesco-motion.cn   www.nabtesco-motion.cn

Nabtesco Corporation

Osaka Sales Office

21st Fl, Dojima Avanza, 1-6-20 Dojima, Kita-ku, Osaka 530-0003, Japan
TEL: +81-6-6341-7180  FAX: +81-6-6341-7182

Tsu Plant

594 Icchoda, Katada-cho, Tsu, Mie 514-8533, Japan
TEL: +81-59-237-4600  FAX: +81-59-237-4610
E-MAIL: P_Information@nabtesco.com   http://precision.nabtesco.com/

background image

Warranty

Doors

Nabtesco technology

opens and closes

automatic doors in

buildings and platform

doors at train stations.

Robots

Precision reduction

gears precisely move

and stop industrial

robots.

Contributing to Society with Our

‘Moving it. Stopping it.’ Technologies

Nabtesco technologies

are at work in many

areas of our

daily lives.

Nabtesco's

technologies

supporting

society

Nabtesco's

technologies

supporting

society

Nabtesco manufactures products which are used in everyday life. Our

high-accuracy components are essential for moving objects; they may

be rarely visible, but are the foundation of everyday objects that you see

moving and wonder how. Nabtesco’s technologies are found throughout

objects that move and stop people’s lives.

Construction

machinery

Running motors and

control valves start

and stop hydraulic

excavators.

Shinkansen

bullet trains

Brakes and doors

ensure safety and

comfort for the

world-famous

Shinkansen bullet trains.

Airplanes

The flight control

systems are crucial

for the flight safety of

aircraft.

Tankers

The engine remote

control systems for

vessels move and

stop large vessels.

Wind turbines

The drive units for wind

turbine generators

control the orientation of

the wind turbine and the

angle of the blades.

1. In the case where Nabtesco confirms that a defect of the Product was caused due to Nabtesco’s design or

manufacture within the Warranty Period of the Product, Nabtesco shall repair or replace such defective

Product at its cost.  The Warranty Period shall be from the delivery of the Product by Nabtesco or its distribu-

tor to you (“Customer”) until the end of one (1) year thereafter, or the end of two thousand (2,000) hours

running of the Product installed into Customer’s equipment, whichever comes earlier.

2. Unless otherwise expressly agreed between the parties in writing, the warranty obligations for the Product

shall be limited to the repair or replacement set forth herein.  OTHER THAN AS PROVIDED HEREIN,

THERE ARE NO WARRATIES ON THE PRODUCT, EXPRESS OR IMPLIED, INCLUDING WITHOUT

LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE.

3. The warranty obligation under the Section 1 above shall not apply if:

a) the defect was caused due to the use of the Product deviated from the Specifications or the working

conditions provided by Nabtesco;

b) the defect was caused due to exposure to foreign substances or contamination (dirt, sand etc.)
c) lubricant or spare part other than the ones recommended by Nabtesco was used in the Product;
d) the Product was used in an unusual environment (such as high temperature, high humidity, a lot of dust,

corrosive/volatile/inflammable gas,  pressurized/depressurized air, under water/liquid or others except for

those expressly stated in the Specifications);

e) the Product was disassembled, re-assembled, repaired or modified by anyone other than Nabtesco;
f ) the defect was caused due to the equipment into which the Product was installed;
g) the defect was caused due to an accident such as fire, earthquake, lightning, flood or others; or
h) the defect was due to any cause other than the design or manufacturing of the Product.

4. The warranty period for the repaired/replaced Product/part under the Section 1 above shall be the rest of the

initial Warranty Period of the defective Product subjected to such repair/replace.

background image

1

C O N T E N T S

The key word of Nabtesco is ‘motion
control.’ We use our strengths in the
fields of component and systems
technologies to develop highly creative
products. Through the Nabtesco Group
as a whole, we can also utilize our
advantage of expertise to maximum
effect in order to further enhance these
strengths.
In the air, on land and at sea, we have
a leading share in various fields of both
international and domestic markets.
Nabtesco will continue to evolve by
utilizing its strengths in many fields and
by exploring the possibilities of the future.

Who is Nabtesco?

April 2002        Initiation of hydraulic equipment business alliance
October 2003  Business merger

NABCO Ltd.

Established 1925

Teijin Seiki

Co., Ltd.

Established 1944

Business Merger

in 2003

Motion control

What is the RD2 Series?
RD2 Series Product Line
Solutions from Nabtesco
Main Applications
Difference Between RD Series and RD2 Series
Product Code Selection
Overview of Features (listed by input type)

Straight input type

Product Codes / Configuration Diagram
Rating Table
External Dimensions

Right angle input type

Product Codes / Configuration Diagram
Rating Table
External Dimensions

Pulley input type

Product Codes / Configuration Diagram
Rating Table
External Dimensions

Motor flange / bushing

Selection Table of Motor Flange Code and Bushing Code
External Dimensions

Technical Information

Cautions for use of RD2 Series
Glossary

Product Selection

Product Selection Flowchart
Selection of Product Code
Allowable Moment Diagram

Technical Data

No-load Running Torque
Calculation of Tilt Angle and Torsion Angle
Engineering Notes

Appendix

Inertia Moment Calculation Formula

The business alliance between Teijin Seiki and
NABCO on hydraulic equipment projects was the
beginning of  a mutual confirmation by the companies
of the other’s product configuration, core technologies,
corporate strategies and corporate culture. This led
to a common recognition that a business merger
would be an extremely effective means of increasing
corporate value and achieving long-term development.
Based on this mutual judgment, in 2003 an equity
transfer was conducted to establish Nabtesco as
a pure holding company, with both firms as wholly
owned subsidiaries. After a year of preparation, both
companies  were  absorbed  and  amalgamated  by
means of a short form merger, and Nabtesco was
transitioned to an operating holding company.

02- 03
04- 05
06- 07
08
09
10
11

13
14-15
16- 39

41
42-43
44- 67

69
70
71- 81

83- 85
86-101

103
104

105
106-111
112

113-117
118
119-122

123

background image

2

What is the RD2 Series?

RD2: The gear that

will change everything

A highly developed Precision Reduction Gear RV

TM

that

offers  high quality, high performance and ease of use.

Industrial robot

Market share

Industrial robot (vertical articulated robot) joints

60%

share of global market *

1

Machine tool ATC drive units

80%

share of Japanese market *

2

Motor fastener components

Nabtesco took Precision Reduction Gear RV, the

most advanced in the industry, and created the

RD Series.

The RD Series is a pre-lubricated model with a

sealed structure that can be easily mounted on

all major motors.

The RD2 Series, a new version with three input

configurations, offers customers dramatically

expanded freedom of design.

Simple

mounting

Precision Reduction Gear RV

TM

Precision Reduction Gear RV

TM

Precision Reduction Gear RV enables the

precision movements of industrial robots

and also ensures their strength.

Precision Reduction Gear RV has been

praised for being compact and lightweight

while offering  high precision and rigidity.

Since its debut in 1985, Precision

Reduction Gear RV has been selected for

use by most major industrial robot

manufacturers around the world.

*1/2 Based on Nabtesco studies

*2    Only for units with precision reduction gears

Precision Gearhead

RD2 Series

background image

3

RD2: The gear that

will change everything

A highly developed Precision Reduction Gear RV

TM

that

offers  high quality, high performance and ease of use.

Industrial robot

Market share

Industrial robot (vertical articulated robot) joints

60%

share of global market *

1

Machine tool ATC drive units

80%

share of Japanese market *

2

Motor fastener components

Nabtesco took Precision Reduction Gear RV, the

most advanced in the industry, and created the

RD Series.

The RD Series is a pre-lubricated model with a

sealed structure that can be easily mounted on

all major motors.

The RD2 Series, a new version with three input

configurations, offers customers dramatically

expanded freedom of design.

Simple

mounting

Precision Reduction Gear RV

TM

Precision Reduction Gear RV

TM

Precision Reduction Gear RV enables the

precision movements of industrial robots

and also ensures their strength.

Precision Reduction Gear RV has been

praised for being compact and lightweight

while offering  high precision and rigidity.

Since its debut in 1985, Precision

Reduction Gear RV has been selected for

use by most major industrial robot

manufacturers around the world.

*1/2 Based on Nabtesco studies

*2    Only for units with precision reduction gears

Precision Gearhead

RD2 Series

background image

4

RD2 Series: Designed to

meet a variety of customer needs

Straight input type

Right angle input

type

Pulley input type

Solid series

Right angle input

type

Straight input type

Pulley input type

Hollow shaft series

...Advantages

...User-friendly

...Benefits

1

Allows compact equipment design

1

Flexibility

1

Many ratios available

2

Reduces the number of

components needed

2
2

Easy installation

3

High reliability

3

Easy mount

Pre-lubricated

Our specialized, environmentally

conscious lubricant

VIGOGREASE RE0

3

Fluorine is used for all oil seals

3 ...

RD2 Series Product Line

background image

5

RD2 Series: Designed to

meet a variety of customer needs

Straight input type

Right angle input

type

Pulley input type

Solid series

Right angle input

type

Straight input type

Pulley input type

Hollow shaft series

...Advantages

...User-friendly

...Benefits

1

Allows compact equipment design

1

Flexibility

1

Many ratios available

2

Reduces the number of

components needed

2
2

Easy installation

3

High reliability

3

Easy mount

Pre-lubricated

Our specialized, environmentally

conscious lubricant

VIGOGREASE RE0

3

Fluorine is used for all oil seals

3 ...

background image

6

Solutions from Nabtesco

Allows routing of cables.

Nabtesco RD2 Series offer

a variety of solutions

High reliability for your machine

More components

Higher assembly cost

Higher design cost

Typical gear is damaged by

shock load

Right angle and pulley models

can be used for a lower profile

Equipment needs increased

space

Hollow shaft series also available

Improved layout

Cable routing is difficult

Highly precise positioning is

possible

High backlash leads to poor

repeatability

Reduced number of components
Reduced cost of assembly
Reduced cost of design

Emergency stop

Interference or impact

Typical equipment

Reduction gear thickness + motor length +

space for motor removal

Backlash:

1 arc.min for straight input and pulley input type

1.5 arc.min for right angle input type (except some models)

RD2 Series

Typical equipment

RD2 Series

Typical equipment

RD2 Series

Only the thickness of the reduction gear itself

Standard Epicyclic Gear

Low contact ratio and low resistance to

impacts

RD2 Series

Use of pin/gear mechanism results in high contact

ratio and considerable impact resistance

Typical equipment

Bearings and external support table are

needed

RD2 Series

Integrated large-capacity

External bearings and support table are not needed

background image

7

Allows routing of cables.

Nabtesco RD2 Series offer

a variety of solutions

High reliability for your machine

More components

Higher assembly cost

Higher design cost

Typical gear is damaged by

shock load

Right angle and pulley models

can be used for a lower profile

Equipment needs increased

space

Hollow shaft series also available

Improved layout

Cable routing is difficult

Highly precise positioning is

possible

High backlash leads to poor

repeatability

Reduced number of components
Reduced cost of assembly
Reduced cost of design

Emergency stop

Interference or impact

Typical equipment

Reduction gear thickness + motor length +

space for motor removal

Backlash:

1 arc.min for straight input and pulley input type

1.5 arc.min for right angle input type (except some models)

RD2 Series

Typical equipment

RD2 Series

Typical equipment

RD2 Series

Only the thickness of the reduction gear itself

Standard Epicyclic Gear

Low contact ratio and low resistance to

impacts

RD2 Series

Use of pin/gear mechanism results in high contact

ratio and considerable impact resistance

Typical equipment

Bearings and external support table are

needed

RD2 Series

Integrated large-capacity

External bearings and support table are not needed

background image

8

Main Applications

Examples of Uses for the RD2 Series

(for reference)

Positioner (tilting axis)

Positioner (rotary axis)

Glass Substrate/ Wafer Rotation and Positioning

Palletizing Robots

Ball Screw Drive

AGV Drive

background image

9

Difference Between RD Series and RD2 Series

2.

Compact design

3.

Center pipe rotates

1.

Simplified motor mounting

Integrated coupling makes

mounting easy

With the previous series, the coupling
was an accessory, but on the RD2
Series the coupling is built into the
input unit. This simplifies the process
of mounting the servo motor to the
reduction gear.

Reduced total length

Compared to the previous series, the total
length in the axial direction has been reduced
by up to 15%.

For encoder

The center tube has been lengthened.

To protect the cable

On the RD2 Series, the center tube is
designed to rotate (synchronized with the
output face.)

Note: • Use of the same motor model is being studied.

• This diagram shows a comparison between the

RD-010C and the RDS-010C.

185.5

155.5

Note: As the center tube rotates, the inner pilot on the output surface has been eliminated.

(1) Rotation synchronized with output surface
(2) Lengthened in order to detect rotation

4.

Environmentally conscious lubricant

Product name: VIGOGREASE RE0

The barium sulfonate used up to now as a rust prevention agent has been replaced
with calcium sulfonate to reduce the environmental impact.

background image

10

Product Code Selection

Note: Free membership registration is required to download the CAD data.

Note: Due to ongoing improvements, the website is subject to change without notice.

1.

Verify reduction gear capacity (model code selection).

2.

Select input unit and motor flange / bushing.

3.

Download CAD data.

Step 1:

Establish items needed for selection.

Step 2:

Verify reduction gear load.

Step 3:

Select reduction gear.

Step 4:

Verify input unit specifications.

Note: For flow charts and calculation methods, see pages 103 – 111 of the Technical Documents.

(1)  Click on the manufacturer, series

and model for the servo motor that

you are using.

(2)  In the reduction gear

list, click on the desired

type of reduction gear.

You may also download CAD
data, either 3D CAD (STEP file)
or 2D CAD (DXF file).

(3)  The product codes

corresponding to that motor

will be displayed.

http://precision.nabtesco.com/

background image

11

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Input type Reduction gear

configuration

Product

Product features

Corresponding

speed ratio

Allowable

acceleration and

deceleration torque

(Nm)

Items not

included

External

dimensions

Solid series

● The total length in

the axial direction

has been reduced

by up to 15% as

compared to the

previous series.

31 to 258

117 to 7,840

Servo motor

P.16

P.27

Hollow shaft

series

P.28

P.39

Solid series

● Equipment can be

more compact

● Can be installed in

confined space

● Table can be

made shorter

31 to 258

117 to 7,840

Servo motor

P.44

P.55

Hollow shaft

series

P.56

P.67

Solid series

● Belt input is

possible

● Motor can be

installed anywhere

● Speed ratio can

be changed using

pulley

57 to 157

412 to 7,840

Servo motor

pulley

P.71

P.75

Hollow shaft

series

P.76

P.81

Overview of Features (listed by input type)

Straight input type

Right angle input type

Pulley input type

background image

12

Straight input type

background image

13

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Product code

Configuration Diagram

Solid series

Hollow shaft series

Straight input unit

Output shaft

Output shaft

Low-speed

tube

Bushing

Servo motor

Motor flange

Coupling

Straight input unit

Coupling

Straight Input Type Product Codes / Configuration Diagram

Model Code

Ratio Code

Input unit code

Motor flange code

Bushing code

Straight Input code Torque code

Series code

S

006

E: Solid series

031, 043, 054, 079, 103

B0 : Corresponding motor shaft diameter Ø8 to 14
B1 : Corresponding motor shaft diameter Ø14 to 24

2-letter code
(code will differ
depending on motor
to be mounted)

2-letter code
(code will differ
depending on motor
to be mounted)

020

041, 057, 081, 105, 121, 161

B0 : Corresponding motor shaft diameter Ø8 to 14
B1 : Corresponding motor shaft diameter Ø14 to 24

040

041, 057, 081, 105, 121, 153

B2 : Corresponding motor shaft diameter Ø14 to 24
B3 : Corresponding motor shaft diameter Ø25 to 35

080

041, 057, 081, 101, 121, 153

B2 : Corresponding motor shaft diameter Ø14 to 24
B3 : Corresponding motor shaft diameter Ø25 to 35

160

066, 081, 101, 121, 145, 171

B4 : Corresponding motor shaft diameter Ø19 to 28
B5 : Corresponding motor shaft diameter Ø32 to 42

320

066, 081, 101, 121, 141, 185

B4 : Corresponding motor shaft diameter Ø19 to 28
B5 : Corresponding motor shaft diameter Ø32 to 42

010

C: Hollow shaft

series

081, 108, 153, 189, 243

B0 : Corresponding motor shaft diameter Ø8 to 14
B1 : Corresponding motor shaft diameter Ø14 to 24

027

100, 142, 184,  233

B0 : Corresponding motor shaft diameter Ø8 to 14
B1 : Corresponding motor shaft diameter Ø14 to 24

050

109, 153, 196, 240

B2 : Corresponding motor shaft diameter Ø14 to 24
B3 : Corresponding motor shaft diameter Ø25 to 35

100

101, 150, 210, 258

B2 : Corresponding motor shaft diameter Ø14 to 24
B3 : Corresponding motor shaft diameter Ø25 to 35

200

106, 156, 206, 245

B4 : Corresponding motor shaft diameter Ø19 to 28
B5 : Corresponding motor shaft diameter Ø32 to 42

320

115, 157, 207, 253

B4 : Corresponding motor shaft diameter Ø19 to 28
B5 : Corresponding motor shaft diameter Ø32 to 42

Note: For selection of motor flange and bushing, see the selection tables on pages 83 – 85 or visit the

Nabtesco website (URL : http://precision.nabtesco.com/).

RD S - 040 E - 153 - B2 - CF - 1E

background image

14

Rating Table

Straight Input Type

Solid series

Model Code

Ratio code

(actual gear

ratio)

Reduction Gear

External

Dimensions

T

0

Rated

Torque

N

0

Rated

Output

Speed

K

Life

Rating

T

S1

Allowable

Startup/Stop

Torque

T

S2

Momentary

maximum

allowable

torque

N

in

Allowable

Input

Speed

(Note 2)

N

S

Allowable

Output

Speed

(Note 2)

N

To

Reference

value to output

speed during

continuous

operation at

rated torque

Backlash

Lost

motion

Torsional

rigidity

(Representative

values)

Start-up

Efficiency

M

0

Allowable

moment

(Note 3)

α

Dimension

α

(Nm)

(rpm)

(h)

(Nm)

(Nm)

(rpm)

(rpm)

(rpm) (arc.min.) (arc.min.) (Nm/arc.min.)

(%)

(Nm)

(mm)

RDS-006E

031

(31)

58

30

6,000

117

294

3,500

100

100

1.5

1.5

20

70

196

77.8

Input Unit
Code : B0
―P.16

Input Unit
Code : B1
―P.17

043

(43)

81

76

054

(53.5)

65

63

079

(79)

44

44

103

(103)

34

34

RDS-020E

041

(41)

167

15

6,000

412

833

3,500

75

75

1.0

1.0

49

75

882

93.2

Input Unit
Code : B0
―P.18

Input Unit
Code : B1
―P.19

057

(57)

61

56

081

(81)

43

42

105

(105)

33

33

121

(121)

29

29

161

(161)

22

22

RDS-040E

041

(41)

412

15

6,000  1,029  2,058  3,000

70

37

1.0

1.0

108

70

1,666  114.6

Input Unit
Code : B2
―P.20

Input Unit
Code : B3
―P.21

057

(57)

53

35

081

(81)

37

34

105

(105)

29

29

121

(121)

25

25

153

(153)

20

20

RDS-080E

041

(41)

784

15

6,000  1,960  3,920  3,000

70

34

1.0

1.0

196

75

2,156  136.1

Input Unit
Code : B2
―P.22

Input Unit
Code : B3
―P.23

057

(57)

53

31

081

(81)

37

29

101

(101)

30

28

121

(121)

25

25

153

(153)

20

20

RDS-160E

066

(66)

1,568

15

6,000  3,920  7,840  2,000

30

20

1.0

1.0

392

75

3,920  167.3

Input Unit
Code : B4
―P.24

Input Unit
Code : B5
―P.25

081

(81)

25

18

101

(101)

20

16

121

(121)

17

15

145

(145)

14

14

171

(171)

12

12

RDS-320E

066

(66)

3,136

15

6,000  7,840  15,680  2,000

30

15

1.0

1.0

980

80

7,056

203

Input Unit
Code : B4
―P.26

Input Unit
Code : B5
―P.27

081

(81)

25

12

101

(101)

20

9

121

(121)

17

7

141

(141)

14

6

185

(185)

11

4

background image

15

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Hollow shaft series

Model Code

Ratio code

(actual gear

ratio)

Reduction Gear

External

Dimensions

T

0

Rated

Torque

N

0

Rated

Output

Speed

K

Life

Rating

T

S1

Allowable

Startup/Stop

Torque

T

S2

Momentary

maximum

allowable

torque

N

in

Allowable

Input

Speed

(Note 2)

N

S

Allowable

Output

Speed

(Note 2)

N

To

Reference

value to output

speed during

continuous

operation at

rated torque

Backlash

Lost

motion

Torsional

rigidity

(Representative

values)

Start-up

Efficiency

M

0

Allowable

moment

(Note 3)

α

Dimension

α

(Nm)

(rpm)

(h)

(Nm)

(Nm)

(rpm)

(rpm)

(rpm) (arc.min.) (arc.min.) (Nm/arc.min.)

(%)

(Nm)

(mm)

RDS-010C

081

(81)

98

15

6,000

245

490

3,500

43

43

1.0

1.0

47

65

686

91.2

Input Unit
Code : B0
―P.28

Input Unit
Code : B1
―P.29

108

(108)

32

32

153

(153)

23

23

189

(189)

19

19

243

(243)

14

14

RDS-027C

100

(99.82)

265

15

6,000

662

1,323  3,500

35

35

1.0

1.0

147

70

980

112

Input Unit
Code : B0
―P.30

Input Unit
Code : B1
―P.31

142

(141.68)

25

25

184

(184)

19

19

233

(233.45)

15

15

RDS-050C

109

(109)

490

15

6,000  1,225  2,450  3,000

28

28

1.0

1.0

255

70

1,764  136.8

Input Unit
Code : B2
―P.32

Input Unit
Code : B3
―P.33

153

(152.6)

20

20

196

(196.2)

15

15

240

(239.8)

13

13

RDS-100C

101

(100.5)

980

15

6,000  2,450  4,900  3,000

30

20

1.0

1.0

510

80

2,450  148.9

Input Unit
Code : B2
―P.34

Input Unit
Code : B3
―P.35

150

(150)

20

17

210

(210)

14

14

258

(258)

12

12

RDS-200C

106

(105.83)

1,960

15

6,000  4,900  9,800  2,000

19

16

1.0

1.0

980

80

8,820  204.4

Input Unit
Code : B4
―P.36

Input Unit
Code : B5
―P.37

156

(155.96)

13

12

206

(206.09)

10

10

245

(245.08)

8

8

RDS-320C

115

(115)

3,136

15

6,000  7,840  15,680  2,000

17

17

1.0

1.0

1,960

80

20,580  245.9

Input Unit
Code : B4
―P.38

Input Unit
Code : B5
―P.39

157

(157)

13

13

207

(207)

10

10

253

(253)

8

8

Notes:

1. The rating table shows the specification values including the entry fields for reduction gear values.

2. The allowable speed may be limited by heat depending on the operating rate. Make sure the surface temperature of the reduction gear

does not exceed 60°C during use.

3. The allowable moment will differ depending on the thrust load. Check the allowable moment diagram.

4. For the moment of inertia of the reduction gears, refer to the external dimension drawings for the reduction gear.

background image

16

M

od

el C

od

e: R

D

S-

00

6E-X

X

X-

B

0  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

8 t

o Ø

14

)

background image

17

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

00

6E-X

X

X-

B1  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

18

M

od

el C

od

e: R

D

S-

02

0E-X

X

X-

B

0  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

8 t

o Ø

14

)

background image

19

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

02

0E-X

X

X-

B1  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

20

M

od

el C

od

e: R

D

S-

04

0E-X

X

X-

B

2  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

21

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

04

0E-X

X

X-

B

3  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

25 t

o Ø3

5)

background image

22

M

od

el C

od

e: R

D

S-

08

0E-X

X

X-

B

2  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

23

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

08

0E-X

X

X-

B

3  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

25 t

o Ø3

5)

background image

24

M

od

el C

od

e: R

D

S-

16

0E-X

X

X-

B

4  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

19 t

o Ø2

8)

background image

25

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

16

0E-X

X

X-

B

5  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

32 t

o Ø

42

)

background image

26

M

od

el C

od

e: R

D

S-

32

0E-X

X

X-

B

4  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

19 t

o Ø2

8)

background image

27

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

32

0E-X

X

X-

B

5  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

32 t

o Ø

42

)

background image

28

M

od

el C

od

e: R

D

S-

01

0C

-X

X

X-

B

0  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

8 t

o Ø

14

)

background image

29

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

01

0C

-X

X

X-

B1  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

30

M

od

el C

od

e: R

D

S-

02

7C

-X

X

X-

B

0  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

8 t

o Ø

14

)

background image

31

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

02

7C

-X

X

X-

B1  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

32

M

od

el C

od

e: R

D

S-

05

0C

-X

X

X-

B

2  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

33

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

05

0C

-X

X

X-

B

3  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

25 t

o Ø3

5)

background image

34

M

od

el C

od

e: R

D

S-

10

0C

-X

X

X-

B

2  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

35

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

10

0C

-X

X

X-

B

3  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

25 t

o Ø3

5)

background image

36

M

od

el C

od

e: R

D

S-

20

0C

-X

X

X-

B

4  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

19 t

o Ø2

8)

background image

37

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

20

0C

-X

X

X-

B

5  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

32 t

o Ø

42

)

background image

38

M

od

el C

od

e: R

D

S-

32

0C

-X

X

X-

B

4  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

19 t

o Ø2

8)

background image

39

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

S-

32

0C

-X

X

X-

B

5  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

32 t

o Ø

42

)

background image

40

Right angle input type

background image

41

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Right Angle Input Type Code Description and Configuration Diagram

Product code

Configuration Diagram

Model Code

Ratio Code

Input unit code

Motor flange code

Bushing code

Right angle input code Torque code

Series code

R

006

E: Solid series

031, 043, 054, 079, 103

C0 : Corresponding motor shaft diameter Ø8 to 14
C1 : Corresponding motor shaft diameter Ø14 to 24

2-letter code
(code will differ
depending on motor
to be mounted)

2-letter code
(code will differ
depending on motor
to be mounted)

020

041, 057, 081, 105, 121, 161

C0 : Corresponding motor shaft diameter Ø8 to 14
C1 : Corresponding motor shaft diameter Ø14 to 24

040

041, 057, 081, 105, 121, 153

C2 : Corresponding motor shaft diameter Ø14 to 24
C3 : Corresponding motor shaft diameter Ø25 to 35

080

041, 057, 081, 101, 121, 153

C2 : Corresponding motor shaft diameter Ø14 to 24
C3 : Corresponding motor shaft diameter Ø25 to 35

160

066, 081, 101, 121, 145, 171

C4 : Corresponding motor shaft diameter Ø19 to 28
C5 : Corresponding motor shaft diameter Ø32 to 42

320

066, 081, 101, 121, 141, 185

C4 : Corresponding motor shaft diameter Ø19 to 28
C5 : Corresponding motor shaft diameter Ø32 to 42

010

C: Hollow shaft

series

081, 108, 153, 189, 243

C0 : Corresponding motor shaft diameter Ø8 to 14
C1 : Corresponding motor shaft diameter Ø14 to 24

027

100, 142, 184,  233

C0 : Corresponding motor shaft diameter Ø8 to 14
C1 : Corresponding motor shaft diameter Ø14 to 24

050

109, 153, 196, 240

C2 : Corresponding motor shaft diameter Ø14 to 24
C3 : Corresponding motor shaft diameter Ø25 to 35

100

101, 150, 210, 258

C2 : Corresponding motor shaft diameter Ø14 to 24
C3 : Corresponding motor shaft diameter Ø25 to 35

200

106, 156, 206, 245

C4 : Corresponding motor shaft diameter Ø19 to 28
C5 : Corresponding motor shaft diameter Ø32 to 42

320

115, 157, 207, 253

C4 : Corresponding motor shaft diameter Ø19 to 28
C5 : Corresponding motor shaft diameter Ø32 to 42

Note: For selection of motor flange and bushing, see the selection tables on pages 83 – 85 or visit the

Nabtesco website (URL : http://precision.nabtesco.com/).

RD R - 080 E - 041 - C3 - GD - ZZ

Solid series

Straight input unit

Straight input unit

Hollow shaft series

Output shaft

Output shaft

Low-speed

tube

Bushing

Servo motor

Motor flange

background image

42

Rating Table

Right angle input type

Solid series

Model Code

Ratio code

(actual gear

ratio)

Reduction Gear

External

Dimensions

T

0

Rated

Torque

N

0

Rated

Output

Speed

K

Life

Rating

T

S1

Allowable

Startup/Stop

Torque

T

S2

Momentary

maximum

allowable

torque

N

in

Allowable

Input

Speed

(Note 2)

N

S

Allowable

Output

Speed

(Note 2)

N

To

Reference

value to output

speed during

continuous

operation at

rated torque

Backlash

Lost

motion

Torsional

rigidity

(Representative

values)

Start-up

Efficiency

M

0

Allowable

moment

(Note 3)

α

Dimension

α

(Nm)

(rpm)

(h)

(Nm)

(Nm)

(rpm)

(rpm)

(rpm) (arc.min.) (arc.min.) (Nm/arc.min.)

(%)

(Nm)

(mm)

RDR-006E

031

(31)

58

30

6,000

117

294

3,500

100

100

2.0

2.0

20

70

196

77.8

Input Unit
Code : C0
―P.44

Input Unit
Code : C1
―P.45

043

(43)

81

76

054

(53.5)

65

63

079

(79)

44

44

103

(103)

34

34

RDR-020E

041

(41)

108

15

6,000

271

543

3,500

75

55

1.5

1.5

49

75

882

93.2

Input Unit
Code : C0
―P.46

Input Unit
Code : C1
―P.47

057

(57)

151

378

755

61

44

081

(81)

167

412

833

43

35

105

(105)

33

30

121

(121)

29

28

161

(161)

22

22

RDR-040E

041

(41)

400

15

6,000

1,000  2,000

3,000

70

32

1.5

1.5

108

70

1,666  114.6

Input Unit
Code : C2
―P.48

Input Unit
Code : C3
―P.49

057

(57)

412

1,029  2,058

53

30

081

(81)

37

28

105

(105)

29

27

121

(121)

25

25

153

(153)

20

20

RDR-080E

041

(41)

400

15

6,000

1,000  2,000

3,000

70

35

1.5

1.5

196

75

2,156  136.1

Input Unit
Code : C2
―P.50

Input Unit
Code : C3
―P.51

057

(57)

556

1,390  2,781

53

31

081

(81)

784

1,960  3,920

37

29

101

(101)

30

27

121

(121)

25

25

153

(153)

20

20

RDR-160E

066

(66)

1,568

15

6,000  3,920  7,840  2,000

30

20

1.5

1.5

392

75

3,920  167.3

Input Unit
Code : C4
―P.52

Input Unit
Code : C5
―P.53

081

(81)

25

18

101

(101)

20

16

121

(121)

17

14

145

(145)

14

13

171

(171)

12

12

RDR-320E

066

(66)

1,800

15

6,000

4,503  9,002

2,000

30

14

1.5

1.5

980

80

7,056

203

Input Unit
Code : C4
―P.54

Input Unit
Code : C5
―P.55

081

(81)

2,209

5,527  11,048

25

9

101

(101)

2,755

6,892  13,776

20

7

121

(121)

3,136

7,840  15,680

17

6

141

(141)

14

5

185

(185)

11

4

background image

43

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Hollow shaft series

Model Code

Ratio code

(actual gear

ratio)

Reduction Gear

External

Dimensions

T

0

Rated

Torque

N

0

Rated

Output

Speed

K

Life

Rating

T

S1

Allowable

Startup/Stop

Torque

T

S2

Momentary

maximum

allowable

torque

N

in

Allowable

Input

Speed

(Note 2)

N

S

Allowable

Output

Speed

(Note 2)

N

To

Reference

value to output

speed during

continuous

operation at

rated torque

Backlash

Lost

motion

Torsional

rigidity

(Representative

values)

Start-up

Efficiency

M

0

Allowable

moment

(Note 3)

α

Dimension

α

(Nm)

(rpm)

(h)

(Nm)

(Nm)

(rpm)

(rpm)

(rpm) (arc.min.) (arc.min.) (Nm/arc.min.)

(%)

(Nm)

(mm)

RDR-010C

081

(81)

98

15

6,000

245

490

3,500

43

39

1.5

1.5

47

65

686

91.2

Input Unit
Code : C0
―P.56

Input Unit
Code : C1
―P.57

108

(108)

32

31

153

(153)

23

23

189

(189)

19

20

243

(243)

14

14

RDR-027C

100

(99.82)

265

15

6,000

662

1,323  3,500

35

23

1.5

1.5

147

70

980

112

Input Unit
Code : C0
―P.58

Input Unit
Code : C1
―P.59

142

(141.68)

25

18

184

(184)

19

15

233

(233.45)

15

14

RDR-050C

109

(109)

490

15

6,000  1,225  2,450  3,000

28

28

1.5

1.5

255

70

1,764  136.8

Input Unit
Code : C2
―P.60

Input Unit
Code : C3
―P.61

153

(152.6)

20

20

196

(196.2)

15

15

240

(239.8)

13

13

RDR-100C

101

(100.5)

980

15

6,000  2,450  4,900  3,000

30

19

1.5

1.5

510

80

2,450  148.9

Input Unit
Code : C2
―P.62

Input Unit
Code : C3
―P.63

150

(150)

20

17

210

(210)

14

14

258

(258)

12

12

RDR-200C

106

(105.83)

1,960

15

6,000  4,900  9,800  2,000

19

11

1.5

1.5

980

80

8,820  204.4

Input Unit
Code : C4
―P.64

Input Unit
Code : C5
―P.65

156

(155.96)

13

8

206

(206.09)

10

6

245

(245.08)

8

5

RDR-320C

115

(115)

3,136

15

6,000  7,840  15,680  2,000

17

14

1.5

1.5

1,960

80

20,580  245.9

Input Unit
Code : C4
―P.66

Input Unit
Code : C5
―P.67

157

(157)

13

11

207

(207)

10

7

253

(253)

8

8

Notes:

1. The rating table shows the specification values including the entry fields for reduction gear values.

2. The allowable speed may be limited by heat depending on the operating rate. Make sure the surface temperature of the reduction gear

does not exceed 60°C during use.

3. The allowable moment will differ depending on the thrust load. Check the allowable moment diagram.

4. For the moment of inertia of the reduction gears, refer to the external dimension drawings for the reduction gear.

background image

44

M

od

el C

od

e: R

D

R

-0

06

E-X

X

X-

C0  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

8 t

o Ø

14

)

background image

45

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-0

06

E-X

X

X-

C

1  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

46

M

od

el C

od

e: R

D

R

-02

0E-X

X

X-

C0  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

8 t

o Ø

14

)

background image

47

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-02

0E-X

X

X-

C

1  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

48

M

od

el C

od

e: R

D

R

-0

40

E-X

X

X-

C

2  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

49

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-0

40

E-X

X

X-

C

3  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

25 t

o Ø3

5)

background image

50

M

od

el C

od

e: R

D

R

-0

80

E-X

X

X-

C

2  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

51

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-0

80

E-X

X

X-

C

3  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

25 t

o Ø3

5)

background image

52

M

od

el C

od

e: R

D

R

-1

60

E-X

X

X-

C

4  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

19 t

o Ø2

8)

background image

53

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-1

60

E-X

X

X-

C5  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

32 t

o Ø

42

)

background image

54

M

od

el C

od

e: R

D

R

-3

20

E-X

X

X-

C

4  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

19 t

o Ø2

8)

background image

55

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-3

20

E-X

X

X-

C5  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

32 t

o Ø

42

)

background image

56

M

od

el C

od

e: R

D

R

-0

10

C

-X

X

X-

C0  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

8 t

o Ø

14

)

background image

57

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-0

10

C

-X

X

X-

C

1  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

58

M

od

el C

od

e: R

D

R

-02

7C

-X

X

X-

C0  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

8 t

o Ø

14

)

background image

59

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-02

7C

-X

X

X-

C

1  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

60

M

od

el C

od

e: R

D

R

-0

50

C

-X

X

X-

C

2  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

61

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-0

50

C

-X

X

X-

C

3  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

25 t

o Ø3

5)

background image

62

M

od

el C

od

e: R

D

R

-1

00

C

-X

X

X-

C

2  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

14 t

o Ø2

4)

background image

63

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-1

00

C

-X

X

X-

C

3  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

25 t

o Ø3

5)

background image

64

M

od

el C

od

e: R

D

R

-2

00

C

-X

X

X-

C

4  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

19 t

o Ø2

8)

background image

65

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-2

00

C

-X

X

X-

C5  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

32 t

o Ø

42

)

background image

66

M

od

el C

od

e: R

D

R

-3

20

C

-X

X

X-

C

4  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

19 t

o Ø2

8)

background image

67

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

R

-3

20

C

-X

X

X-

C5  (

C

or

re

sp

on

di

ng m

ot

or s

ha

ft d

ia

m

et

er

: Ø

32 t

o Ø

42

)

background image

68

Pulley input type

background image

69

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Pulley Input Type Code Description and Configuration Diagram

Product code

Configuration Diagram

Model Code

Ratio Code

Input unit code

Motor flange code

Bushing code

Pulley input code Torque code

Series code

P

020

E: Solid series

081

A0

ZZ: No motor flange
(The pulley input
type does not come
with a motor flange.)

ZZ: No bushing
(The pulley input
type does not come
with a bushing.)

040

057

A3

080

081

A4

160

066

A6

320

081

A7

010

C: Hollow shaft

series

108

A1

027

100

A2

050

109

A3

100

101

A5

200

106

A8

320

157

A9

The input unit code for the pulley input type is one code for each model number.

RD P - 050 C - 109 - A3 - ZZ - ZZ

Solid series

Pulley input unit

Pulley input unit

Input shaft

Input shaft

Hollow shaft series

Output shaft

Output shaft

Low-speed

tube

Servo motor

background image

70

Rating Table

Pulley input type

Solid series

Model

Code

Ratio code

(actual

gear ratio)

Reduction Gear

Input shaft

External

Dimensions

T

0

Rated

Torque

N

0

Rated

Output

Speed

K

Life

Rating

T

S1

Allowable

Startup/Stop

Torque

T

S2

Momentary

maximum

allowable

torque

N

in

Allowable

Input

Speed

(Note 2)

N

S

Allowable

Output

Speed

(Note 2)

N

To

Reference

value to output

speed during

continuous

operation at

rated torque

Back-

lash

Lost

motion

Torsional

rigidity

(Representative

values)

Start-up

Efficiency

M

O

Allowable

moment

(Note 3)

α

Dimen-

sion

α

M

Oin

Rated

moment

M

Sin

Allowable

moment

β

dimen-

sions

(Nm) (rpm)

(h)

(Nm)

(Nm) (rpm) (rpm) (rpm) (arc.min.) (arc.min.) (Nm/arc.min.)

(%)

(Nm) (mm) (Nm)

(Nm) (mm)

RDP-020E

081

(81)

167

15

6,000

412

833  3,500

43

43

1.0

1.0

49

75

882

93.2

38

38

58

Input Unit
Code : A0
―P.71

RDP-040E

057

(57)

412

1,029  2,058

3,000

53

25

108

80

1,666  114.6

78

122

73.8

Input Unit
Code : A3
―P.72

RDP-080E

081

(81)

784

1,960  3,920

37

24

196

80

2,156  136.1

133

Input Unit
Code : A4
―P.73

RDP-160E

066

(66)

1,568

3,920  7,840

2,000

30

15

392

80

3,920  167.3

158

295

86.6

Input Unit
Code : A6
―P.74

RDP-320E

081

(81)

3,136

7,840  15,680

25

12

980

85

7,056  203

417

Input Unit
Code : A7
―P.75

Model

Code

Ratio code

(actual

gear ratio)

Reduction Gear

Input shaft

External

Dimensions

T

0

Rated

Torque

N

0

Rated

Output

Speed

K

Life

Rating

T

S1

Allowable

Startup/Stop

Torque

T

S2

Momentary

maximum

allowable

torque

N

in

Allowable

Input

Speed

(Note 2)

N

S

Allowable

Output

Speed

(Note 2)

N

To

Reference

value to output

speed during

continuous

operation at

rated torque

Back-

lash

Lost

motion

Torsional

rigidity

(Representative

values)

Start-up

Efficiency

M

O

Allowable

moment

(Note 3)

α

Dimen-

sion

α

M

Oin

Rated

moment

M

Sin

Allowable

moment

β

dimen-

sions

(Nm) (rpm)

(h)

(Nm)

(Nm) (rpm) (rpm) (rpm) (arc.min.) (arc.min.) (Nm/arc.min.)

(%)

(Nm) (mm) (Nm)

(Nm) (mm)

RDP-010C

108

(108)

98

15

6,000

245

490

3,500

32

32

1.0

1.0

47

75

686

91.2

38

38

58

Input Unit
Code : A1
―P.76

RDP-027C

100

(99.82)

265

662  1,323

35

28

147

75

980

112

40

Input Unit
Code : A2
―P.77

RDP-050C

109

(109)

490

1,225  2,450

3,000

28

23

255

80

1,764  136.8

78

90

73.8

Input Unit
Code : A3
―P.78

RDP-100C

101

(100.5)

980

2,450  4,900

30

18

510

80

2,450  148.9

134

Input Unit
Code : A5
―P.79

RDP-200C

106

(105.83) 1,960

4,900  9,800

2,000

19

14

980

80

8,820  204.4

158

230

86.6

Input Unit
Code : A8
―P.80

RDP-320C

157

(157) 3,136

7,840  15,680

13

13

1,960

85  20,580  245.9

215

Input Unit
Code : A9
―P.81

Notes:

1. The rating table shows the specification values including the entry fields for reduction gear values.

2. The allowable speed may be limited by heat depending on the operating rate. Make sure the surface temperature of the reduction gear

does not exceed 60°C during use.

3. The allowable moment will differ depending on the thrust load. Check the allowable moment diagram.

4. For the moment of inertia of the reduction gears, refer to the external dimension drawings for the reduction gear.

Hollow shaft series

background image

71

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

P-

02

0E-

08

1-

A

0

background image

72

M

od

el C

od

e: R

D

P-

04

0E-

05

7-

A

3

background image

73

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

P-

08

0E-

08

1-

A

4

background image

74

M

od

el C

od

e: R

D

P-

16

0E-

06

6-

A

6

background image

75

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

P-

32

0E-

08

1-

A

7

background image

76

M

od

el C

od

e: R

D

P-

01

0C

-1

08

-A

1

background image

77

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

P-

02

7C

-1

00

-A

2

background image

78

M

od

el C

od

e: R

D

P-

05

0C

-1

09

-A

3

background image

79

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

P-

10

0C

-1

01

-A

5

background image

80

M

od

el C

od

e: R

D

P-

20

0C

-1

06

-A

8

background image

81

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

M

od

el C

od

e: R

D

P-

32

0C

-1

57

-A

9

background image

82

Motor flange / bushing

background image

83

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Selection Table of Motor Flange Code and Bushing Code-1

Select the motor flange code and bushing code based on the dimension of the motor to be used.

Applicable model code: RD

-006E, 020E, 010C, 027C

Supported motor shaft diameter: Ø8 to Ø14

Model Code

Input unit

code

Motor flange

Bushing

Motor flange code

Motor shaft  length (mm)

a

Motor mounting  pilot diameter (mm)

Øb

Motor mounting  pilot tolerance

Motor mounting  pilot length (mm)

c (* )

Bolt  P.C.D.

d

Bolt size

e

Step

ped

part

max length  (mm) g

Bushing

code

Motor shaft  diameter(mm)

Øf

Motor shaft  tolerance

Min.

Max.

Reduction gear (straight input type)

AA

23

30

30

h7

3

46

M4

3.5

0A

8

h6

RDS-006E

B0

AB

23

31

50

h7

5

60

M4

4

0B

9

h6

RDS-020E

AC

23

31

50

h7

5

70

M4

4

0C

10

h6

RDS-010C

AD

23

31

50

h7

5

70

M5

4

0D

11

h6

RDS-027C

AE

24

32

70

h7

6

90

M5

5

0E

9

k6

Reduction gear (right angle input type)

AF

23

31

70

h7

6

90

M6

4

0F

11

k6

RDR-006E

C0

AG

30

38

80

h7

6

100

M6

11

ZZ

14

h6

RDR-020E

AH

23

31

80

h7

6

100

M6

4

RDR-010C

AJ

30

38

95

h7

6

11

5

M8

11

RDR-027C

AK

35

43

11

5

h7

6

165

M8

16

AL

32

40

80

h7

6

100

M6

13

AM

25

32

30

h7

3

46

M4

5.5

AN

26

34

70

h7

6

90

M6

7

AP

25

33

50

h7

5

60

M4

6

AQ

23

30

60

h7

6

75

M5

3

AR

23

30

40

h7

63

M5

3.5

* The motor mounting pilot length indicates the maximum value of the capable range.

Supported motor shaft diameter: Ø14 to Ø24

Model Code

Input unit

code

Motor flange

Bushing

Motor flange code

Motor shaft  length (mm)

a

Motor mounting  pilot diameter (mm)

Øb

Motor mounting  pilot tolerance

Motor mounting  pilot length (mm)

c (* )

Bolt  P.C.D.

d

Bolt size

e

Step

ped

part

max length  (mm) g

Bushing

code

Motor shaft  diameter(mm)

Øf

Motor shaft  tolerance

Min.

Max.

Reduction gear (straight input type)

CA

28

55

50

h7

6

70

M5

6.5

1B

15

h6

RDS-006E

B1

CB

28

55

70

h7

5.5

90

M5

6.5

1C

16

h6

RDS-020E

CC

28

55

70

h7

5.5

90

M6

6.5

1D

17

h6

RDS-010C

CD

30

57

80

h7

6

100

M6

8.5

1E

19

h6

RDS-027C

CE

30

57

95

h7

6

11

5

M6

8.5

1F

22

h6

Reduction gear (right angle input type)

CF

30

57

95

h7

6

11

5

M8

8.5

1G

14

k6

RDR-006E

C1

CG

32

59

11

0

h7

7

135

M8

10.5

1H

19

k6

RDR-020E

CH

32

59

11

0

h7

7

145

M8

10.5

1J

16

k6

RDR-010C

CJ

47

74

11

0

h7

7

145

M8

25.5

ZZ

24

h6

RDR-027C

CK

32

59

114.3

h7

5

200

M12

10.5

CL

32

59

11

5

h7

6

165

M8

10.5

CM

32

59

130

h7

6

165

M10

10.5

CN

32

59

200

h7

5

235

M12

10.5

CP

37

64

80

h7

6

100

M6

15.5

CQ

35

62

95

h7

6

11

5

M8

13.5

CR

40

67

11

0

h7

7

145

M8

18.5

CT

32

59

11

0

h7

7

130

M8

10.5

CU

28

55

60

h7

75

M5

6.5

* The motor mounting pilot length indicates the maximum value of the capable range.

a

c

Øb

d

g

Bolt size

e

Øf

background image

84

Selection Table of Motor Flange Code and Bushing Code-2

Select the motor flange code and bushing code based on the dimension of the motor to be used. Applicable model code: RD

-040E,080E,050C,100C

Supported motor shaft diameter: Ø14 to Ø24

Model Code

Input unit

code

Motor flange

Bushing

Motor flange code

Motor shaft  length (mm)

a

Motor mounting  pilot diameter (mm)

Øb

Motor mounting  pilot tolerance

Motor mounting  pilot length (mm)

c (* )

Bolt  P.C.D.

d

Bolt size

e

Step

ped

part

max length  (mm) g

Bushing

code

Motor shaft  diameter(mm)

Øf

Motor shaft  tolerance

Min.

Max.

Reduction gear (straight input type)

CA

34

55

50

h7

6

70

M5

5

1A

14

h6

RDS-040E

B2

CB

34

55

70

h7

5.5

90

M5

5

1B

15

h6

RDS-080E

CC

34

55

70

h7

5.5

90

M6

5

1C

16

h6

RDS-050C

CD

36

57

80

h7

6

100

M6

7

1D

17

h6

RDS-100C

CE

36

57

95

h7

6

11

5

M6

7

1E

19

h6

Reduction gear (right angle input type)

CF

36

57

95

h7

6

11

5

M8

7

1F

22

h6

RDR-040E

C2

CG

38

59

11

0

h7

7

135

M8

9

1G

14

k6

RDR-080E

CH

38

59

11

0

h7

7

145

M8

9

1H

19

k6

RDR-050C

CJ

53

74

11

0

h7

7

145

M8

24

1J

16

k6

RDR-100C

CK

38

59

114.3

h7

5

200

M12

9

ZZ

24

h6

CL

38

59

11

5

h7

6

165

M8

9

CM

38

59

130

h7

6

165

M10

9

CN

38

59

200

h7

5

235

M12

9

CP

43

64

80

h7

6

100

M6

14

CQ

41

62

95

h7

6

11

5

M8

12

CR

46

67

11

0

h7

7

145

M8

17

CT

38

59

11

0

h7

7

130

M8

9

* The motor mounting pilot length indicates the maximum value of the capable range.

Supported motor shaft diameter: Ø25 to Ø35

Model Code

Input unit

code

Motor flange

Bushing

Motor flange code

Motor shaft  length (mm)

a

Motor mounting  pilot diameter (mm)

Øb

Motor mounting  pilot tolerance

Motor mounting  pilot length (mm)

c (* )

Bolt  P.C.D.

d

Bolt size

e

Step

ped

part

max length  (mm) g

Bushing

code

Motor shaft  diameter(mm)

Øf

Motor shaft  tolerance

Min.

Max.

Reduction gear (straight input type)

GA

36

81

95

h7

8

11

5

M8

7

3A

25

h6

RDS-040E

B3

GB

38

83

11

0

h7

7

135

M8

9

3B

28

h6

RDS-080E

GC

38

83

11

0

h7

7

145

M8

9

3C

28

k6

RDS-050C

GD

38

83

114.3

h7

5

200

M12

9

3D

32

k6

RDS-100C

GE

38

83

130

h7

6

165

M10

9

3E

32

h6

Reduction gear (right angle input type)

GF

38

83

200

h7

6

235

M12

9

ZZ

35

(+0.010/0)

RDR-040E

C3

GG

48

93

11

0

h7

7

145

M8

19

RDR-080E

GH

48

93

114.3

h7

5

200

M12

19

RDR-050C

GJ

43

88

11

0

h7

7

145

M8

14

RDR-100C

GK

38

83

11

0

h7

7

130

M8

9

* The motor mounting pilot length indicates the maximum value of the capable range.

a

c

Øb

d

g

Bolt size

e

Øf

background image

85

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Selection Table of Motor Flange Code and Bushing Code-3

Select the motor flange code and bushing code based on the dimension of the motor to be used. Applicable model code: RD

-160E,320E,200C,320C

Supported motor shaft diameter: Ø19 to Ø28

Model Code

Input unit

code

Motor flange

Bushing

Motor flange code

Motor shaft  length (mm)

a

Motor mounting  pilot diameter (mm)

Øb

Motor mounting  pilot tolerance

Motor mounting  pilot length (mm)

c (* )

Bolt  P.C.D.

d

Bolt size

e

Step

ped

part

max length  (mm) g

Bushing

code

Motor shaft  diameter(mm)

Øf

Motor shaft  tolerance

Min.

Max.

Reduction gear (straight input type)

GA

36

71

95

h7

8

11

5

M8

7

2A

19

h6

RDS-160E

B4

GB

38

73

11

0

h7

7

135

M8

9

2B

22

h6

RDS-320E

GC

38

73

11

0

h7

7

145

M8

9

2C

24

h6

RDS-200C

GD

38

73

114.3

h7

5

200

M12

9

2D

19

k6

RDS-320C

GE

38

73

130

h7

6

165

M10

9

2E

24

k6

Reduction gear (right angle input type)

GF

38

73

200

h7

6

235

M12

9

ZZ

28

h6

RDR-160E

C4

GG

48

83

11

0

h7

7

145

M8

19

RDR-320E

GH

48

83

114.3

h7

5

200

M12

19

RDR-200C

GJ

43

78

11

0

h7

7

145

M8

14

RDR-320C

* The motor mounting pilot length indicates the maximum value of the capable range.

Supported motor shaft diameter: Ø32 to Ø42

Model Code

Input unit

code

Motor flange

Bushing

Motor flange code

Motor shaft  length (mm)

a

Motor mounting  pilot diameter (mm)

Øb

Motor mounting  pilot tolerance

Motor mounting  pilot length (mm)

c (* )

Bolt  P.C.D.

d

Bolt size

e

Step

ped

part

max length  (mm) g

Bushing

code

Motor shaft  diameter(mm)

Øf

Motor shaft  tolerance

Min.

Max.

Reduction gear (straight input type)

JA

56

86

11

0

h7

7

145

M8

7

4A

32

h6

RDS-160E

B5

JB

54

84

114.3

h7

5

200

M12

5

4B

35

(+0.010/0)

RDS-320E

JC

85

11

5

114.3

h7

5

200

M12

36

4C

38

k6

RDS-200C

JD

57

87

180

h7

5

215

M12

8

4D

32

k6

RDS-320C

JE

54

84

200

h7

5

235

M12

5

4E

38

h6

Reduction gear (right angle input type)

JF

87

11

7

200

h7

5

235

M12

38

4F

35

h6

RDR-160E

C5

JG

59

89

114.3

h7

5

200

M12

10

ZZ

42

h6

RDR-320E

JH

54

84

130

h7

10

165

M10

5

RDR-200C

* The motor mounting pilot length indicates the maximum value of the capable range.

RDR-320C

a

c

Øb

d

g

Bolt size

e

Øf

background image

86

background image

87

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

background image

88

background image

89

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

background image

90

background image

91

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

background image

92

background image

93

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

background image

94

background image

95

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

background image

96

background image

97

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

background image

98

background image

99

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

background image

100

background image

101

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

background image

102

Technical Information

background image

103

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

If the end user of the product is a military interest or if the product is to be used in the manufacture of
weapons, the product may be subject to export regulations prescribed in the Foreign Trade Control Act.
Confirm these conditions before exporting the product and take the necessary steps.
If failure or malfunction of the product may directly endanger human life or if it is used in units which
may injure the human body (atomic facilities, space equipment, medical equipment, safety units, etc.),
examination of individual situations is required. Contact our agent or nearest business office in such a case.
Although this product has been manufactured under strict quality control, if it is to be used in equipment that
could cause serious injury or damage to facilities as a result of failure of the product, all appropriate safety
measures must be taken.

The reduction gear is filled with grease and the standard replacement time is 20,000 hours.
When using the reduction gear with deteriorated grease or under an inappropriate ambient temperature
condition (40°C or higher), check the deterioration condition of the grease and determine the appropriate
replacement cycle.

Be careful so that the surface temperature of the reduction gear does not exceed 60°C.

Safety information and detail product instructions are indicated in the operation manual.
The operation manual can be downloaded from the following web address.

http://precision.nabtesco.com/

Cautions for use of RD2 Series

Installation environment

Maintenance

Reduction gear temperature

Manuals

Note

Note

1:

2:

Use the reduction gear under the following

environment:

· Location where the ambient temperature is

between -10°C to 40°C.

· Location where the humidity is less than 85%

and no condensation occurs.

· Location where the altitude is less than 1000 m.
· Well-ventilated  location

Do not install the reduction gear at the following

locations.

· Location where a lot of dust is collected.
· Outdoors that can be directly affected by wind and rain
· Location near the environment that contains combustible,

explosive, or corrosive gases and flammable materials.

· Location where the performance of the servo motor can

be affected by magnetic fields or vibration.

If the required installation environment cannot be established, contact our customer

representative in advance.
When using the reduction gear under special conditions (clean room, equipment for food,

concentrated alkali, high-pressure steam, etc.), contact our customer representative in advance.

background image

104

Glossary

Life rating

The lifetime resulting from the operation with the rated torque

and the rated output speed is referred to as the “life rating ”.

Allowable acceleration/deceleration torque

When the machine starts or stops, the load torque to be applied

to the reduction gear is larger than the constant-speed load

torque due to the effect of the inertia torque of the rotating part.
In such a situation, the allowable torque during

acceleration/deceleration is referred to as “allowable

acceleration/deceleration torque”.
Note: Be careful that the load torque, which is applied at

startup and stop, does not exceed the allowable

acceleration/deceleration torque.

Momentary maximum allowable torque

A large torque may be applied to the reduction gear due to

execution of emergency stop or by an external shock. In such a

situation, the allowable value of the momentary applied torque

is referred to as “momentary maximum allowable torque”.
Note: Be careful that the momentary excessive torque does not

exceed the momentary maximum allowable torque.

Allowable input speed

The allowable value of the input speed is referred to as

“allowable input speed”.
Note: The reduction gear temperature may increase

significantly even when the speed is under the

allowable speed depending on the speed ratio. In such

a case, use the reduction gear at the speed so that the

gear temperature is 60°C or lower.

Allowable output speed

The allowable value of the output speed is referred to as

“allowable output speed”.
Note: The reduction gear temperature may exceed 60°C even when the

speed is under the allowable output speed depending on the

specification conditions (duty, ambient temperature). In such a

case, use the reduction gear at the speed so that the gear

temperature is 60°C or lower.

Allowable output speed reference value

This is a reference value of the output speed at which the

temperature increase of the reduction gear is 40°C or lower

when the rated torque is applied to the reduction gear and the

gear is operated continuously in one direction.
Note: Maintain the environment and operation conditions so that

the temperature of the reduction gear is 60ºC or lower.

Torsional rigidity, lost motion, backlash

When a torque is applied to the output shaft while the input shaft

is fixed, torsion is generated according to the torque value. The

torsion can be shown in the hysteresis curves.
The value of b/a is referred to as “torsional rigidity.”
The torsion angle at the mid point of the hysteresis curve width

within ±3% of the rated torque is referred to as “lost motion.”
The torsion angle when the torque indicated by the hysteresis

curve is equal to zero is referred to as “backlash.”

Startup efficiency

The efficiency of the moment when the reduction gear starts up

is referred to as “startup efficiency.”

No-load running torque (input shaft)

The torque for the input shaft that is required to run the reduction

gear without load is referred to as “no-load running torque.”

Allowable moment and maximum thrust load

The external load moment may be applied to the reduction gear

during normal operation. The allowable values of the external

moment and the external axial load at this time are each referred

to as “allowable moment” and “maximum thrust load.”

Input shaft rated moment

This is the moment load that satisfies the life rating. The moment

to be applied normally must be less than the rated moment.

Input shaft allowable moment

This is the allowable value of the load that can be applied for

startup and stop.

Load torque

Max torque for startup

Momentary max torque

Max torque for stop

Constant torque

Time

Hysteresis curve

Backlash

Lost motion

a

b

±100% Rated Torque

±3% Rated Torque

Torsion angle

background image

105

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Product Selection Flowchart

Product Selection

Setting of equipment to be verified

Reduction gear input method

Presence of hollow in the output surface of the reduction gear

Reduction gear mounting direction

3.Setting of input type

1.Calculation of inertia moment

2.Calculation of constant torque

4.Setting of operation pattern

5.Calculation of inertia torque

6.Calculation of load torque

7.Calculation of average speed and average

load torque

Select a reduction gear based on the calculated rated torque

Setting of operation conditions

Weight of the equipment to be verified

Configuration of the equipment to be verified

Rotation angle

Rotation time

Cycle time

Operating hours per day

Operating days per year

Verify the maximum torque for startup

1

S

A

T

T ≤

NO

Verify the output speed

S

N

N ≤

2

Re-evaluate the

operation pattern

YES

YES

Verify the thrust load

Examine the moment load

O

M

M ≤

NO

YES

NO

YES

NO

Tentatively select a reduction gear model.

Verify the maximum torque for startup

1

S

A

T

T

Upgrade the model

Upgrade the model

NO

Verify the output speed

NO

NO

Re-evaluate the

operation pattern

YES

YES

Verify the thrust load

Verify the moment load

NO

YES

NO

YES

YES

YES

NO

Verify the service life

L

L

ex

NO

Determine the reduction gear model

Selection complete

END

Selection complete

YES

YES

NO

Verify the input shaft moment

NO

Re-evaluate the

operation pattern

YES

NO

Allowable thrust

2

W

Allowable thrust

2

W

2

1

M

M

M

M

Sin

Oin

O

M

M

S

N

N

2

Re-evaluate

operation pattern

Review load conditions

Step 1.

Set items required for selection

Step 2.

Verify the reduction gear load

Step 3.

Select a reduction gear

Step 4.

Verify the input unit specifications

YES

NO

Calculate the rated torque

that satisfies the required life and select

a reduction gear

NO

YES

YES

Upgrade the model

The input type is right

angle or straight.

Reduction gear

selection method (1)

Reduction gear

selection method (2)

background image

106

Selection of Product Code-1-(1)

(With vertical shaft installed)

Step 1. Set items required for selection
Specification example for the equipment to be verified (1) (with vertical shaft installed)

Specification example for the equipment to be verified (1)

Setting item and value

Reduction gear input method

Right angle input type

Presence of hollow in the output surface of the reduction gear

Hollow (C type)

Work P

.C.D.:D

2

D

1

a

b

Equipment to be

verified: Work

Equipment to be

verified: Disk

Motor flange

Servo motor

Right angle input unit

Vertical shaft installation

Hollow diameter

Fixing component

Reduction gear

Reduction gear mounting direction

Vertical shaft installation

Installed equipment weight

W

A

―Disk weight (kg)

450

W

B

― Work weight (kg)

100 x 4 pieces

Installed equipment configuration

D

1

―Disk: D dimension (mm)

1,200

a―Work piece: a dimension (mm)

200

b―Work piece: b dimension (mm)

400

D

2

― Work piece: P.C.D. (mm)

800

Operation conditions

θ―Rotation angle (°)

180

[t

1

+t

2

+t

3

]― Rotation time (sec)

2.5

[t

4

]― Cycle time (sec)

20

Q

1

―Equipment operation hours per day (hours/day)

12

Q

2

―Equipment operation days per year (days/year)

365

Step 2-1. Examine the reduction gear load

Setting item

Calculation formula

Selection examples

1.Calculate the inertia moment based the calculation formula on page 123.

I

R

Load inertia moment

(kgm

2

)

2

1

2

1

2

2

2

2

2

2

1

1

4

1,000

2

1,000

1,000

12

2

1,000

2

R

R

R

R

R

B

B

R

A

R

I

I

I

I

I

D

W

b

a

W

I

D

W

I

+

=

=

=

×

×

×

+

+

=

×

×

=

Work inertia

Disk inertia moment

(kgm

2

)

(kgm

2

)

(kgm

2

)

2

2

2

2

2

1

7

.

151

7

.

70

81

7

.

70

4

1,000

2

800

100

1,000

400

1,000

200

12

100

81

2

1,000

2

1,200

450

I

I

I

R

R

R

=

+

=

=

×

×

×

+

+

=

=

×

×

=

2.Examine the constant torque.

T

R

Constant torque with

vertical shaft installed

(Nm)

(

)

(

) -

(

) - Maximum pilot diameter

Hollow shaft series

Maximum pilot diameter

Solid series

Note:

Friction factor

=

=

=

=

×

×

×

×

+

=

mm

mm

D

μ

D

W

W

T

in

in

B

A

R

440

284

1,000

2

9.8

μ

Rolling diameter: Use the pilot diameter

which is almost

equivalent to the rolling

diameter in this

selection calculation.

Use 0.015 for this example as the load

is applied to the bearing of the RD2

reduction gear.

* If the reduction gear model is not

determined, select the following pilot

diameter:

(

)

(Nm)

T

R

=

×

×

×

×

×

+

=

5

.

27

015

.

0

1,000

2

440

9.8

4

100

450

Load torque (Nm)

Time (s)

Speed (rpm)

Product Selection

background image

107

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Selection of Product Code-1-(2)

(With horizontal shaft installed)

Step 1. Set items required for selection
Equipment specification example (2) (with horizontal shaft installed)

Equipment specification example (2)

Setting item and value

Reduction gear input method

Straight input type

Presence of hollow in the output surface of the reduction gear

Without hollow (Solid series)

Reduction gear mounting direction

Horizontal shaft installation

Installed equipment weight

W

C

―Mounted work weight (kg)

490

Installed equipment configuration

a―a dimension (mm)

500

b―b dimension (mm)

500

c―R dimension (mm)

320

Operation conditions

θ―Rotation angle (°)

90

[t

1

+t

2

+t

3

]― Rotation time (sec)

1.5

[t

4

]― Cycle time (sec)

20

Q

1

―Equipment operation hours per day (hours/day)

24

Q

2

―Equipment operation days per year (days/year)

365

Step 2-1. Examine the reduction gear load

Setting item

Calculation formula

Selection examples

1.Calculate the inertia moment based the calculation formula on page 123.

I

R

Load inertia moment

(kgm

2

)

2.Examine the constant torque.

T

R

Constant torque with

horizontal shaft installed

(Nm)

Position of the center of gravity

Rotation center

Load torque (Nm)

Time (s)

Rotation speed (rpm)

a

R

b

2

1,000

1,000

1,000

12

×

+

+

2

2

×

=

R

W

b

a

W

I

C

C

R

1,000

8

.

9 ×

×

=

R

W

T

C

R

(kgm

2

)

2

2

2

6

.

70

1,000

320

490

1,000

500

1,000

500

12

490

I

R

=

×

+

+

×

=

(Nm)

T

R

=

×

×

=

1,537

1,000

320

8

.

9

490

Horizontal shaft installation

Equipment to be examined

Fixing component

Straight input unit

Servo motor

Motor flange

Reduction gear

Product Selection

background image

108

* For Selection examples, the calculation for specification example for the equipment to be verified (1) (with vertical shaft installed) is listed.

Step 2-2. Set items required for selection

Setting item

Calculation formula

Selection examples

(Specification example for the equipment to be verified (1))

(3)-1

Examine the input type.

RDS― Straight input type

Select RDR (right angle input type) based on the

equipment to be verified.

RDR― Right angle input type
RDP― Pulley input type

(3)-2

Examine the in-line type and hollow type of the reduction gear output shaft.

Solid series or hallow shaft series

Select the hollow shaft type (C type) based on the

equipment to be verified.

(4)

Set the acceleration/deceleration time, constant-speed operation time, and output speed.

t

1

― Acceleration time (sec)

• The operation pattern does not need to be verified if it is

already set.

• If the operation pattern has not been determined, use the fol-

lowing formula to calculate the reference operation pattern.

Note: 1.  Assume that t

1

and t

3

are the same.

Note: 2.  N

2

= 15 rpm if the reduction gear output speed (N

2

) is

not known.

Note: 3.  If t

1

and t

3

is less than 0, increase the output

speed or extend the rotation time.

Examine the operation pattern using N

2

= 15 rpm as the

reduction gear output speed is unknown.

t

2

― Constant-speed  operation

time (sec)

t

3

― Deceleration time (sec)

N

2

― Constant speed (rpm)

N

1

― Average  speed  for  startup

(rpm)

2

2

1

N

N =

(      )

rpm

N

5

.

7

2

15

1

=

=

N

3

― Average speed for stop (rpm)

2

2

3

N

N =

(      )

rpm

N

5

.

7

2

15

3

=

=

(5)

Calculate the inertia torque for acceleration/deceleration.

T

A

― Inertia torque for acceleration

(Nm)

(

)

60

2

0

1

2

π

×

×

=

t

N

I

T

R

A

(

)

(Nm)

T

A

=

×

×

=

6

.

476

5

.

0

0

15

7

.

151

60

T

D

― Inertia torque for deceleration

(Nm)

(

)

0

3

2

×

×

=

t

N

I

T

R

D

60

(

)

(Nm)

T

D

=

×

×

=

6

.

−476

60

2

5

.

0

0 15

7

.

151

π

(6)

Calculate the load torque for acceleration/deceleration.

T

1

― Maximum torque for startup

(Nm)

Constant torque  See page 106.

:

1

T

T

T

T

R

R

A

+

=

(Nm)

T

=

+

=

1

.

504

5

.

27

6

.

476

1

T

2

― Constant  maximum  torque

(Nm)

R

T

T =

2

(Nm)

T =

5

.

27

2

T

3

― Maximum  torque  for  stop

(Nm)

Constant torque  See page 106.

:

T

R

3

T

T

T

R

D

+

=

(Nm)

T

=

+

=

1

.

449

5

.

27

6

.

476

3

(7) -1

Calculate the average speed.

N

m

― Average speed (rpm)

3

2

1

3

3

2

2

1

1

t

t

t

N

t

N

t

N

t

N

m

+

+

×

+

×

+

×

=

)

(

12

5

.

1

5

.

0

5

.

0

5

.

7

5

.

0

15

5

.

1

5

.

7

5

.

0

rpm

N

m

=

+

+

×

+

×

+

×

=

(7) -2

Calculate the average load torque.

T

m

― Average load torque (Nm)

3

3

2

2

1

1

3

3

3

2

2

2

1

1

1

N

t

N

t

N

t

T

N

t

T

N

t

T

N

t

T

m

×

+

×

+

×

×

×

+

×

×

+

×

×

=

3

10

3

10

3

10

3

10

(Nm)

T

m

=

×

+

×

+

×

×

×

+

×

×

+

×

×

=

7.

315

5.

7

5.

0

15

5.

1

5.

7

5.

0

1.

449

5.

7

5.

0

5.

27

15

5.

1

1.

504

5.

7

5.

0

3

10

3

10

3

10

3

10

Go to Page 109 if the reduction gear model is verified based on the required life.

Go to Page 110 if the service life is verified based on the reduction gear model.

)

(

360

60

3

1

3

2

1

2

2

3

2

1

3

1

t

t

t

t

t

t

N

θ

t

t

t

t

t

+

+

+

=

×

+

+

=

=

]

[

[

Rotation time

]

Rotation time

(

)

(

)

(

)

(

)

(

)

rpm

N

t

t

t

t

t

t

15

sec

5

.

1

sec

5

.

0

sec

5

.

1

)

5

.

0

5

.

0

(

5

.

2

sec

5

.

0

360

60

15

180

5

.

2

2

2

3

1

2

3

1

=

=

=

=

=

+

=

=

×

=

=

Selection of Product Code-2

(With vertical shaft installed)

Product Selection

background image

109

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Step 3. Select a reduction gear

Reduction gear selection method (1) Calculate the required torque based on the load conditions

and required life and select a reduction gear.

Setting item

Calculation formula

Selection examples

(1)

Calculate the rated torque for the reduction gear that satisfies the required life.

L

e x

― Required life (year)

Based on the operation conditions

5 years

Q

1cy

― Number of cycles per day

(times)

4

1

1

60

60

t

Q

Q

cy

×

×

=

(times)

2,160

20

60

60

12

1

=

×

×

=

cy

Q

Q

3

― Operating hours of reduction

gear per day (h)

(

)

60

60

3

2

1

1

3

×

+

+

×

=

t

t

t

Q

Q

cy

(

)

(h)

5

.

1

60

60

5

.

0

5

.

1

5

.

0

2,160

3

Q

=

×

+

+

×

=

Q

4

― Operating hours of reduction

gear per year (h)

2

3

4

Q

Q

Q

×

=

(h)

Q

548

365

5

.

1

4

=

×

=

L

hour

― Reduction gear service life (h)

ex

L

Q

L

hour

×

=

4

(h)

L

hour

2,740

5

548

=

×

=

T

O

' ―

Reduction gear rated torque

that satisfies the required life

(Nm)

(  )

:

:

0

3

10

0

N

K

N

N

K

L

hour

T

T

0

'

m

m

×

×

=

Reduction gear rated torque (Nm)

Reduction gear rated life (h)

(Nm)

T

0

'

=

×

×

=

5

.

233

15

12

6,000

2,740

7

.

315

3

10

(  )

(2)

Select a reduction gear model based on the calculated rated torque.

Tentative selection of the reduction gear

model and actual reduction ratio

Tentatively select a reduction gear model that T

0

is equal to or greater

than T

0

’.

Then check that T

S1

of the tentatively selected model is equal to or

greater than the maximum torque for startup T

1

and N

S

of the tenta-

tively selected model is equal to or greater than the output speed N

2

. If

the tentatively selected reduction gear is outside of the specifications,

increase the reduction gear model.

T

S1

: Check the rating table.

N

S

: The allowable output speed varies depending on the actual reduc-

tion ratio.

Tentatively select the actual reduction ratio alongside the allowable output

speed.

Tentatively select RDR-027C (T

0

= 265 Nm) based on the

calculated rated torque.
Rated torque: 265 (Nm) ≥ 233.5 (Nm)
Allowable acceleration/deceleration torque: 662 (Nm) ≥
504.4 (Nm)
Allowable output speed: 15 (rpm) (when the actual reduction
ratio is 233.45) is equal to or greater than 15 (rpm), tentatively
selecting RDR-027C-233 should be no problem.

W

1

― Radial load (N)

(

)

1,000

2

2

1

1

Refer to the rating table of

α = each input type.

L

W

L

W

α

M

×

+

+

×

=

L

2

L

1

α

W

1

W

2

0(N)

L

1

― Distance to the point of radial

load application (mm)

0(mm)

W

2

― Thrust load (N)

(

)

(    )

N

W

8,330

8

.

9

4

100

450

2

=

×

×

+

=

L

2

― Distance to the point of thrust

load application (mm)

0(mm)

M ― Calculation of the moment

load (Nm)

As α dimension of RDR-027C is 112 (mm) based on the
rating table

Determination of the reduction gear model

From the allowable moment diagram on Page 112

• Thrust load

• Moment load

Select a reduction gear for which the above fall within the allowable

moment diagram.

Specify the actual reduction ratio so it is lower than the actual reduc-

tion ratio that was selected when the allowable output speed was

examined.

The actual reduction ratio is determined based on the motor speed,

input torque, and inertia moment. Check with the motor manufacturer.

For this equipment,
Thrust load W

2

= 8,330 (N)

Moment load M = 0 (N)
As the above values are within the RCR-027C allowable
moment diagram, RDR-027C is selected.
The actual reduction ratio lower than 233.45 which was
selected when the allowable output speed was verified is
selected.

Select a motor flange and bushing.

Refer to the selection table on page 83 to 85 or our Web site for the motor flange and bushing selection.

URL : http://precision.nabtesco.com/

Selection of the motor flange and bushing.

T

M1

― Motor momentary maximum

torque (Nm)

Determine based on the motor specifications.

For example, T

M1

= 25 (Nm)

T

M1OUT

Maximum torque generated

at the output shaft for the

reduction gear (Nm)

Note: If the maximum torque generated at the output shaft
for the reduction gear exceeds the momentary maximum
allowable torque, impose a limitation on the motor torque
value. Also, ensure that the shock torque, due to an emer-
gency stop, is the same as or lower than the momentary
maximum allowable torque.

For example, calculate the maximum torque generated at
the output shaft for the reduction gear based on the speci-
fications when RDR-027C-233.45 was selected.

As T

M1out

is equal to or greater than T

s2

(1,323 Nm), a

limitation is required for the motor torque.

(Nm)

M

=

×

+

+

×

=

0

1,000

0

8,330

)

112

0

(

0

(Nm)

4,085

100

70

45

.

233

25

1

1

R η

T

T

M

out

M

=

×

×

=

×

×

=

1

1

:Startup efficiency(%)

:Actual reduction ratio

R
η

R η

T

T

M

out

M

×

×

=

Selection of Product Code-3-(1)

Product Selection

background image

110

Reduction gear selection method (2) Calculate the required torque based on the

load conditions and required life and select a reduction gear.

Setting item

Calculation formula

Selection examples

(1)

Select a reduction gear model based on the maximum torque for startup T

1

, output speed N

2

, thrust load, and moment load.

Tentative selection of the reduction gear

model and actual reduction ratio

If T

S1

of the tentatively selected model is equal to or greater

than the maximum torque for startup T

1

and the tentatively

selected model is outside of the reduction gear specifica-
tions, upgrade the reduction gear model.
T

S1

: Check the rating table.

N

S

: The allowable output speed varies depending on the

actual reduction ratio.
Tentatively select the actual reduction ratio alongside the
allowable output speed.

Allowable acceleration/deceleration torque: 662 (Nm) ≥
504.4 (Nm)
Allowable output speed: 15 (rpm) (when the actual reduc-
tion ratio is 233.45) is equal to or greater than 15 (rpm),
tentatively select RDR-027C-233.

W

1

― Radial load (N)

(         )

1,000

2

2

1

1

L

W

L

α

W

M

×

+

+

×

=

L

2

L

1

α

W

1

W

2

Refer to the rating table of

α = each input type.

0(N)

L

1

― Distance to the point of radial

load application (mm)

0(mm)

W

2

― Thrust load (N)

(

)

( )

N

W

8,330

9.8

4

100

450

2

=

×

×

+

=

L

2

― Distance to the point of thrust

load application (mm)

0(mm)

M ― Calculation of the moment

load (Nm)

As α dimension of RDR-027C is 112 (mm) based on the
rating table

Determination of the reduction gear model

From the allowable moment diagram on Page 112

• Thrust load

• Moment load

Select a reduction gear for which the above fall within the

allowable moment diagram.

Specify the actual reduction ratio so it is lower than the

actual reduction ratio that was selected when the allowable

output speed was examined.

The actual reduction ratio is determined based on the mo-

tor rotation speed, input torque, and inertia moment. Check

with the motor manufacturer.

For this equipment,
Thrust load W

2

= 8,330 (N)

Moment load M = 0 (N)
As the above fall within the RCR-027C allowable moment
diagram, RDR-027C is selected.
The actual reduction ratio lower than 233.45 which was
selected when the allowable output speed was examined
is selected.

(2)

Calculate the reduction gear service life and compare to the required life.

L

h

― Life (h)

3

10

0

0

6,000

×

×

=

m

m

h

T

T

N

N

L

3

10

6,000

=

=

h

L

(h)

4,184

7

.

315

265

12

15 ×

×

Q

1cy

― Number of cycles per day (times)

4

1

1

60

60

t

Q

Q

cy

×

×

=

(times)

2,160

20

60

60

12

1

=

×

×

=

cy

Q

Q

3

― Operating hours per day (h)

(

)

60

60

3

2

1

1

3

×

+

+

×

=

t

t

t

Q

Q

(

)

(h)

Q

5

.

1

60

60

0.5+1.5+0.5

2,160

3

=

×

×

=

Q

4

― Operating hours per year (h)

2

3

4

Q

Q

Q

×

=

(h)

Q

548

365

5

.

1

4

=

×

=

L

year

― Reduction gear service life (year)

4

Q

L

L

year

h

=

(       )

year

L

year

6

.

7

548

4,180 =

=

L

e x

― Required life (year)

Based on the required specifications.
If the required life is longer than the service life, upgrade
the reduction gear model and re-calculate the service life.

As L

ex

5 (year) is equal to or smaller than 7.6 (year), a

reduction gear model is RDR-027C.

Select a motor flange and bushing

Refer to the selection table on page 83 to 85 or our Web site for the motor flange and bushing selection.

URL : http://precision.nabtesco.com/

Cautions for selecting a motor

T

M 1

― Motor momentary maximum

torque (Nm)

Determine based on the motor specifications.

For example, T

M1

= 25 (Nm)

T

M1OUT

Maximum torque generated

at  the  output  shaft  for  the

reduction gear (Nm)

Note: If the maximum torque generated at the output shaft
for the reduction gear exceeds the momentary maximum
allowable torque, impose a limitation on the motor torque
value. Also, ensure that the shock torque, due to an emer-
gency stop, is the same as or lower than the momentary
maximum allowable torque.

For example, calculate the maximum torque generated at
the output shaft for the reduction gear based on the speci-
fications when RDR-027C-233.45 was selected.

As T

M1

out is equal to or greater than T

s2

(1,323 Nm), a

limitation is required for the motor torque.

(Nm)

M

=

×

+

+

×

=

0

1,000

0

8,330

)

112

0

(

0

1

1

R η

T

T

M

out

M

×

×

=

:Startup efficiency(%)

:Actual reduction ratio

R
η

(Nm)

4,085

100

70

45

.

233

25

1

1

R η

T

T

M

out

M

=

×

×

=

×

×

=

Selection of Product Code-3-(2)

Product Selection

background image

111

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Step 4. Verify the input unit specifications (calculation method of pulley input unit

specifications)

* Examine only when selecting a pulley input unit.

Setting item

Calculation formula

Selection examples

Calculate the moment load for the input shaft.

M

1

Input shaft load moment to be

applied during normal operation

(Nm)

Refer to the rating

table on Page 70.

1,000

3

3

1

L

W

M

β

β

=

+

×

=

Reduction gear

Pulley input unit

W

3

β

L

3

When RDP-027C-100 is selected

M

2

Input shaft load moment to

be applied at startup and stop

(Nm)

(    )

(      )

(             )

Refer to the rating table on Page 70.

Pulley pitch diameter

Efficiency

Actual reduction ratio

Maximum output

torque for startup

1,000

100

%

(Nm)

3

2

L

β

mm

M

β =

+

×

×

=

2 10

-3

×

When the maximum torque for startup is 600 Nm

at the output stage and the pulley pitch diameter is

50 mm

Select a pulley input unit based on the moment load of the input shaft.

Determination of the input shaft

Select an input unit that meets the above conditions.

If RDP-027C-100 is selected, M

0in

= 38 (Nm) and

M

Sin

= 40 (Nm) and the there is no problem with

the pulley input shaft.

( )

(

)

(      )
(      )

mm

L

β

mm

N

W

10

58

150

3

3

=

=

=

(Nm)

M

=

+

×

=

2

.

10

1,000

10

58

150

1

(             )

(Nm)

M

=

+

×

×

=

8

.

21

1,000

10

58

1,000

50

75

.

0

82

×

.

99

600

2

2

* M

0in

, M

Sin

= Refer to the rating table on Page 70.

2

1

M

M

M

M

Sin

Oin

Selection of Product Code-4

Product Selection

background image

112

Allowable Moment Diagram

E type (006E/020E/040E)

0

1,000

2,000

3,000

4,000

5,000

6,000

0                  200                  400                 600                800                1,000             1,200              1,400             1,600              1,800

Allowable moment (Nm)

Thrust load (N)

006E

196

882

1,666

1,470

2,156

3,920

7,056

7,840

686

980

1,764

5,880

8,820

11,760

2,450

8,820

20,580

13,720

19,600

29,400

14,700

19,600

3,920

5,194

020E

040E

E type (080E/160E/320E)

0

5,000

10,000

15,000

20,000

25,000

0                  1,000                 2,000                 3,000                4,000                 5,000                 6,000                7,000                8,000

Allowable moment (Nm)

Thrust load (N)

160E

320E

080E

C type (010C/027C/050C)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0               200              400               600              800             1,000            1,200           1,400            1,600           1,800           2,000

Allowable moment (Nm)

Thrust load (N)

010C

027C

050C

C type (100C/200C/320C)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

0                                 5,000                               10,000                             15,000                              20,000                             25,000

Allowable moment (Nm)

Thrust load (N)

100C

200C

320C

137

735

1,450

3,040

2,040

558

1,660

2,520

4,980

7,370
4,890

3,410

970

6,664

17,052

14,994

8,134

3,100

254 323

595

2,480

1,715

1,500

Solid series

RD

-E

Hollow shaft series

RD

-C

Product Selection

background image

113

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

No-load Running Torque

(straight input type)

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

0          500       1,000      1,500      2,000      2,500      3,000      3,500      4,000

0          500       1,000      1,500      2,000      2,500      3,000      3,500      4,000

0

0.5

1

1.5

2

2.5

3

3.5

4

0                   500                1,000               1,500               2,000              2,500

0

1

2

3

4

5

6

7

8

9

0                   500                1,000               1,500               2,000              2,500

1

2

3

4

5

0

0          500       1,000      1,500      2,000      2,500      3,000      3,500      4,000

0

1

2

3

4

5

6

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

RDS-006E

RDS-020E

RDS-040E

RDS-080E

RDS-160E

RDS-320E

031

043

054

079
103

041

057

081

105

121
161

041

057

081

105

121
153

041

057

081
101
121
153

066

081

101

121
145

171

066

081

101
121
141
185

Solid series

Technical Data

background image

114

No-load Running Torque

(straight input type)

0           500       1,000      1,500      2,000      2,500      3,000      3,500     4,000

0

0.5

1

1.5

2

2.5

3

3.5

4

0             500          1,000        1,500        2,000        2,500        3,000        3,500

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0           500       1,000      1,500      2,000      2,500      3,000      3,500     4,000

100

142

184

233

0

1

2

3

4

5

6

0                    500                 1,000                1,500               2,000              2,500

106

156

206
245

0

1

2

3

4

5

6

7

8

0                    500                 1,000                1,500               2,000              2,500

115

157

207

253

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

RDS-010C

RDS-027C

RDS-050C

RDS-100C

RDS-200C

RDS-320C

101

150

210

258

0

0.1

0.2

0.3

0.4

0.5

0.6

0           500       1,000      1,500      2,000      2,500      3,000      3,500     4,000

081

108

153

189

243

0

0.5

1

1.5

2

2.5

109

153

196

240

Hollow shaft series

Technical Data

background image

115

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

No-load Running Torque

(Right angle input type)

0

0.2

0.4

0.6

0.8

1

0           500       1,000      1,500      2,000      2,500      3,000      3,500      4,000

0

0.5

1

1.5

2

2.5

0           500       1,000      1,500      2,000      2,500      3,000      3,500      4,000

0

1

2

3

4

5

6

7

8

0                    500                1,000                1,500               2,000               2,500

0

2

4

6

8

10

12

0                    500                1,000                1,500               2,000               2,500

RDR-006E

RDR-020E

RDR-040E

RDR-080E

RDR-160E

RDR-320E

031

043

054

079
103

041

057

081

105
121

161

066

081

101

121
145
171

066
081

101
121
141

185

0

1

2

3

4

5

0             500         1,000        1,500        2,000        2,500        3,000        3,500

041

057

081

105

121

153

0

1

2

3

4

5

6

0             500          1,000        1,500         2,000         2,500        3,000        3,500

041

057

081
101
121

153

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Solid series

Technical Data

background image

116

0

0.5

1

1.5

2

0          500        1,000     1,500      2,000      2,500      3,000      3,500      4,000

0

0.5

1

1.5

2

2.5

3

3.5

0             500         1,000         1,500        2,000        2,500        3,000        3,500

0

2

4

6

8

10

0                  500                 1,000               1,500               2,000               2,500

0

2

4

6

8

10

12

0                    500                 1,000               1,500               2,000               2,500

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

No-load running torque

(input shaft) (Nm)

RDR-010C

RDR-027C

RDR-050C

RDR-100C

RDR-200C

RDR-320C

081

108

153

189

243

109

153

196
240

101

150

210

258

156

206
245

115

157

207
253

106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0          500        1,000     1,500      2,000      2,500      3,000      3,500      4,000

0

0.5

1

1.5

2

2.5

0          500        1,000     1,500      2,000      2,500      3,000      3,500      4,000

100

142

184

233

Hollow shaft series

No-load Running Torque

(Right angle input type)

Technical Data

background image

117

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

Input speed (rpm)

No-load running torque

(input shaft) (Nm)

0

1

2

3

4

5

0          500       1,000      1,500      2,000      2,500      3,000      3,500      4,000

RDP-010C

RDP-027C

RDP-050C

RDP-100C

RDP-200C

RDP-320C

0

1

2

3

4

5

6

7

0          500       1,000      1,500      2,000      2,500      3,000      3,500      4,000

RDP-020E

RDP-040E

RDP-080E

RDP-160E

RDP-320E

Solid series

Hollow shaft series

No-load Running Torque

(Pulley input type)

Technical Data

background image

118

Calculation of Tilt Angle and Torsion Angle

Calculation of tilt angle

When a load moment occurs with an external load applied, the output shaft will tilt

in proportion to the load moment (if

2

is larger than b).

The moment rigidity indicates the rigidity of the main bearing, and it is represented

by the load moment value required for tilting the main bearing by 1 arc.min.

RD

-006E

RD

-020E

RD

-040E

RD

-080E

RD

-160E

RD

-320E

117
372
931

1,176
2,940
4,900

Dimensions (mm)

Model code

Moment rigidity

Nm/arc.min.*

1

12.5
20.1
29.9
27.9
42.7
48.4

a

90.3

113.3
144.5
164.0
210.0
251.4

b

W

1

W

2

Output shaft installation surface

External load diagram

θ

=

θ

: Tilt angle of the output shaft (arc.min)

M

1

: Moment rigidity (Nm/arc.min.)

W

1

,W

2

: Load (N)

1

,

L

2

: Distance to the point of load application (mm)

1

: L

1

+       − a

L

1

: Distance from the output shaft installation

surface to the point of load application (mm)

RD

-010C

RD

-027C

RD

-050C

RD

-100C

RD

-200C

RD

-320C

421

1,068
1,960
2,813
9,800

12,740

Dimensions (mm)

Model code

Moment rigidity

Nm/arc.min.*

1

28.0
38.0
50.5
58.7
76.0

114.5

a

119.2
150.0
187.3
207.6
280.4
360.4

b

RD

-006E

RD

-020E

RD

-040E

RD

-080E

RD

-160E

RD

-320E

20

49

108
196
392
980

Lost motion

Model code

Torsion rigidity

Nm/arc.min.

*

2

Backlash

arc.min.

For RDS or RDP

1.5

For RDR

2.0

For RDS or RDP

1.0

For RDR

1.5

For RDS

1.5

For RDR

2.0

For RDS or RDP

1.0

For RDR

1.5

For RDS or RDP

1.0

For RDR

1.5

For RDS or RDP

1.0

For RDR

1.5

Lost motion

arc.min.

± 1.76

± 5.00
± 12.3
± 23.5
± 47.0
± 94.0

Measured torque

Nm

RD

-010C

RD

-027C

RD

-050C

RD

-100C

RD

-200C

RD

-320C

47

147
255
510
980

1,960

± 2.94

± 7.94
± 14.7
± 29.4
± 58.8
± 94.1

Calculation of torsion angle

Calculate the torsion angle when the torque is applied in a single direction, using an example of RD

-160E.

1)  When the load torque is 30 Nm..................Torsion angle (ST

1

)

When the load torque is within the lost motion range:

2)  When the load torque is 1,300 Nm Torsion angle (ST

2

)

When the load torque is within the rated range:

Note: 1. The torsion angles that are calculated above are for a single reduction gear.

30

ST

1

=

= 0.32arc.min. or less

×

47

1 (arc.min.)

2

1

ST

2

=

= 3.70arc.min.

+

2

1,300 - 47.0

392

a

b/2

b

θ

b
2

Lost motion

Model code

Torsion rigidity

Nm/arc.min.

*

2

Backlash

arc.min.

Lost motion

arc.min.

Measured torque

Nm

W

1     1

+ W

2

L

2

M

1

× 10

3

L

1

L

2

*

1

The moment rigidity value is a representative value.

*

2

The torsion rigidity value is a representative value.

Technical Data

background image

119

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Engineering Notes-1

Installation direction of RD2 Series

Lubrication

<Nabtesco-specified lubricant>

If you use the hollow shaft types installed vertically with the shaft facing upward (as shown in the figures below),

contact our customer representative in advance.

Note: For the solid type, the installation direction shown in the figures below can be used.

● The standard lubricant for RD2 Series is grease.

RD2 Series are pre-lubricated with our recommended VIGOGREASE RE0 grease when shipped.

When this product is operated while it is filled with an appropriate amount of lubricant, the standard lubricant

replacement time due to lubricant degradation is 20,000 hours. However, if RD2 Series are operated under

unfavorable conditions (that may deteriorate the lubricant more quickly or that cause gear surface temperatures

above 40°C), the state of lubricant degradation should be checked and the lubricant replaced earlier as necessary.

● It is recommended that the running-in operation is performed.

Abnormal noise or torque variation may occur during operation due to the characteristics of the lubricant. There is

no problem with the quality when the symptom disappears after the running-in operation is performed for 30

minutes or more (until the surface temperature of the RD2 body reaches around 50°C).

Brand
Manufacturer
Ambient temperature

VIGOGREASE RE0

Nabtesco

-10 to 40°C

Straight input type

Pulley input type

Right angle input type

Vertical shaft installation (with shaft facing upward)

Output shaft

Hollow shaft section

Case

Input unit

Motor flange

Output shaft

Hollow shaft section

Case

Motor flange

Input unit

Output shaft

Hollow shaft section

Case

Input unit

background image

120

Engineering Notes-2

Installation of the reduction gear and mounting it to the output shaft

<Bolt tightening torque and tightening force>

<Calculation of allowable transmission torque of bolts>

<Serrated lock washer for hexagonal socket head cap screw>

When installing the reduction gear and mounting it to the output shaft, use hexagonal socket head cap screw and

tighten to the torque, as specified below, in order to satisfy the momentary maximum allowable torque, which is noted

in the rating table.

Employment of the Belleville spring washer is recommended to prevent the bolt from loosening and protect the bolt

seat surface from flaws.

Name: Belleville spring washer (made by Heiwa Hatsujyo Industry Co., Ltd.)
Corporation symbol: CDW-H

CDW-L (only for M5)

Material: S50C to S70C
Hardness: H

RC

40 to 48

T

Allowable transmission torque by tightening bolt (Nm)

F

Bolt tightening force (N)

D

Bolt mounting P.C.D. (mm)

μ

Friction factor

μ=0.15: When lubricant remains on the mating face.
μ=0.20: When lubricant is removed from the mating face.
n

Number of bolts (pcs.)

Hexagon socket head

cap screw

nominal size x pitch

(mm)

M5   × 0.8
M6   × 1.0
M8   × 1.25
M10 × 1.5
M12 × 1.75
M16 × 2.0

9.01 ± 0.49
15.6 ± 0.78
37.2 ± 1.86
73.5 ± 3.43
129  ± 6.37
319  ± 15.9

9,310

13,180
23,960
38,080
55,100

103,410

Hexagon socket head cap screw
JIS B 1176 : 2006
Strength class
JIS B 1051 : 2000  12.9
Thread
JIS B 0209 : 2001  6 g

Tightening torque

(Nm)

Tightening force

F

(N)

Bolt specification

Nominal

size

ID and OD of

Belleville

spring washer

Ød

5
6
8

10
12
16

5.25

6.4
8.4

10.6
12.6
16.9

ØD

8.5

10
13
16
18
24

t

0.6
1.0
1.2
1.5
1.8
2.3

H

0.85
1.25
1.55

1.9
2.2
2.8

Note: When using any equivalent washer, select it with special care given to its outside diameter D.

D

2

T = F ×     × μ × n × 10

(Unit: mm)

ØD

t

H

Ød

-3

Note: 1. The tightening torque values listed are for steel or cast iron material.

2. If softer material, such as aluminum or stainless, is used, limit the tightening torque. Also pay attention to

the system requirements of the transmission torque and the allowable moment.

background image

121

Straight input type

Right angle input type

Pulley input type

Motor flange / bushing

Technical Information

Engineering Notes-3

Gearhead Installation

Bolt size

Tightening torque (Nm)

Bolt specification

Mount the gearhead onto the specified position. Align the gear-head

bolt holes with the tapped holes of the installation components, and

install the case with the designated number of bolts.
Tighten all the hexagonal socket head cap screw (with a conical spring

lock washer) uniformly, by using the specified tightening torque.

Note: When the gearhead is delivered, a motor flange may already be mounted. Depending on the situation, the gearhead might

not be normally assembled unless the motor flange is removed. In the following cases, remove the motor flange before
assembling the gearhead into the equipment.

• In the standard mounting, the torque wrench cannot be used because it makes contact with the motor flange
• In the reverse mounting, the motor flange is larger than the mating hole

Do not apply external load to the hollow section of the RD2 hollow shaft series. It could warp the oil seal.

M5
M6
M8

M10
M12
M16

Standard

mounting

Reverse mounting

(for RD2 solid series only)

9.01 ± 0.49
15.6 ± 0.78
37.2 ± 1.86
73.5 ± 3.43
129  ± 6.37
319  ± 15.9

Hexagon socket head cap screw
JIS B 1176 : 2006
Strength class
JIS B 1051 : 2000 12.9
Thread
JIS B 0205 : 2001  6 g

Installation of the servo motor (for straight and right angle input units)

Wipe the outside of the servo motor shaft and the clamping surface inside the coupling with a clean cloth.
(Make sure that the clamping bolt of the coupling is not tightened.)
When using a bushing, wipe the inside and outside of the bushing using a clean cloth.

Step 1.

When using a bushing, insert the bushing into the coupling, and then align the position of the
clamping bolt of the coupling and the motor flange hole.

Step 2.

Wipe off the oil on the installation face of the motor flange and servo motor, and apply the liquid
sealing agent on the face.

Step 3.

Reduction gear

Reduction gear

Fixing component

Fixing component

Movable component